• Title/Summary/Keyword: 염화

Search Result 1,988, Processing Time 0.027 seconds

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

Crystallization and high purification of aluminium chloride hexahydrate from kaolin leaching solution (고령토 침출용액으로부터 고순도 염화알루미늄 결정화 분리)

  • 김우식;장희동
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.584-594
    • /
    • 1996
  • For the separation and purification of aluminium chloride hexahydrate crystals from kaolin leaching solution the effects of crystallization conditions, such as crystallization temperature, concentration of aluminium chloride concentration in the leaching solutin and gas flow rate of HCl into the leaching solution, on purity of the aluminium chloride hexahydrate crystals were investigated. The supersaturation level of aluminium chloride in the leaching solution gave great influence on the purity of the crystals. When supersaturated concentration of the aluminium chloride in the leaching solution was generated in low level, the aluminium chloride hexahydrate crystals were produced with high purity ; that is, the crystals hving a low Fe-ion concentration. The supersaturation level of aluminium chloride in the leaching solution was mainly determined by crystallization temperature, concentrations of aluminium chloride and hydrochloric acid in the solution. However, in spite of changes of the above crystallization coditions, a needle shape morphology of aluminium chloride hexahydrate crystals did not modified. To measure hydrochloric acid concentration in the kaolin leaching solution, we applied the oxalate titration method, which was suggested by shank [9] and it was prove that this method could titrate hydrochloroic acid concentration in multi-component ionic solution such as kaolin leaching solution.

  • PDF

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.

The Effect of Chloride on the Corrosion of Reinforced Concrete (염화물이 철근콘크리트의 부식에 미치는 영향)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Lee, Sul;Kim, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.147-154
    • /
    • 2005
  • It is found that as contents of chloride ion and age increase, area of corrosion also increases. Inare increased to 1035 days from 730 days, slope of increase of corrosion area is greatest. Non-rust inhibitor specimens show corrosion area of 8~35 times more than rust inhibitor specimens and anticorrosive effects by application of rust inhibitor can be confirmed. When chloride ion is not contained, corrosion control effects of steel reinforcing according to increase of thickness are found, but specimens having chloride ion show no regular tend of thickness and corrosion due to complex problems such as reverse diffusion of chloride and test errors.

Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials (고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성)

  • Jin, Sang-Ho;Kim, Il-Sun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.401-404
    • /
    • 2008
  • Crack is a penetration path of harmful material such as chloride ion, and causes a serious deterioration in durability. So, the characteristics of chloride penetration are investigated for the cracked flexural concrete members using high-durable materials. For these, the flexural crack of beam specimen is introduced by transverse loading. And, Rapid Chloride Penetration Test (RCPT) and Long-term chloride penetration test are carried out to compare the chloride penetration depth. From test results when crack is happened, the chloride penetration resistance of the durable member was superior than that of the normal member. Blast furnace slag concrete member has a excellent chloride penetration resistance in long-term chloride penetration test.

  • PDF

Etching properties of BeCu Foil using $FeCl_3$ solution (염화제이철 용액을 이용한 베릴륨동 기판의 식각 특성)

  • Lee, Keun-Woo;Lee, Byung-Wook;Lee, Tae-Sung;Lee, Jong-Ha;Lee, Jae-Hong;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.26-27
    • /
    • 2006
  • 구리와 강철의 성질을 혼합한 것과 같은 우수한 성질을 갖고 있어서 열전도율이 좋고 내마모성이 뛰어난 베릴륨동 기판(BeCu foil)에 대한 식각 특성에 관하여 연구하였다. 일반적으로 베결륨구리에 대한 식각용액은 염화제이철($FeCl_3$)이 널리 알려져 있으며, 이 용액은 농도와 온도에 따라 식각시간이 달라지게 되어 식각되는 면의 상태가 영향을 받게 된다. 염화제이철의 농도를 변화시켜 본 결과 염화제이철의 농도가 증가할수록 식각률이 증가하였고, 염화제이철에 염산(HCI)을 첨가한 결과 식각률이 증가함을 알 수 있었다. 이는 염화제이철의 성분 중에서 염산(HCl)의 농도가 식각률에 영향을 미치고 있음을 나타낸다. 또한 염화제이철의 온도가 $40^{\circ}C$일때 식각률이 가장 우수하며 식각되는 면의 상태가 매우 양호해지고 각각 되는 면의 각도도 수직에 가까워진다.

  • PDF

Analysis of Chloride Penetration in Mortar Sections using Laser Induced Breakdown Spectroscopy (LIBS를 활용한 모르타르 단면 염화물 침투 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.583-591
    • /
    • 2021
  • In this study, the applicability and reproducibility of LIBS in the analysis of chloride penetration in the mortar section were investigated. Standard analysis (IC, potentiometric titration) and LIBS analysis were simultaneously performed on the accelerated and immersed mortar by chloride concentration. Through LIBS analysis after making an eluate at the same depth for each concentration, the signal intensity of chloride ions was confirmed according to the depth and concentration at the wavelength of 837.59 nm, and a correlation between the LIBS signal intensity and the chloride concentration was confirmed. Although it is an aqueous solution-based LIBS analysis, the applicability and reproducibility of LIBS were confirmed not only for the incorporation of chloride but also for the amount of permeated chloride.

Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts (금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성)

  • Choi, Jae Hyung;Park, Yong Beom;Lee, Suk Hee;Cheon, Jae Kee;Choi, Jae Wook;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.643-648
    • /
    • 2010
  • Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.