• Title/Summary/Keyword: 염화철

Search Result 150, Processing Time 0.03 seconds

A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery (전기화학 반응에 의한 염화철 폐식각액의 재생 및 구리 회수에 관한 연구)

  • Kim, Seong-En;Lee, Sang-Lin;Kang, Sin-Choon;Kim, I-Cheol;Sheikh, Rizwan;Park, Yeung-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • Electrochemical regeneration of the iron chloride waste solution from PCB etching reduces environmental contamination and produces copper as by-product, so the economic feasibility is high. But iron chloride waste solution contains iron and copper and the reactions occurring in the electrolytic cell are complicated. In this work, the oxidation of iron chloride and copper deposition were examined through batch electrolysis and the optimum conditions of the process parameters were found. The oxidation of ferrous chloride was achieved easily to the desired level. The copper deposition efficiency was high in the reaction using the carbon cathode when the copper density was 12 g/L with the electric current density of $350mA/cm^2$, and the ratio of the $Fe^{2+}$ ion was high. In addition, the possibility of the scale-up was confirmed in continuous operation of bench reactor using the optimum conditions obtained.

염화철처리 활성탄에 의한 합성지하수 중의 질산성 질소 제거

  • 정경훈;정오진;최형일;김우항;박상일;강민석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.05a
    • /
    • pp.324-328
    • /
    • 2004
  • 본 연구에서는 활성탄을 염화철로 표면 처리한 염화철처리 활성탄을 사용하여 지하수중의 ${NO_3}^{-}$-/-N 제거 가능성과 그 제거에 미치는 영향을 검토하고자 한 것으로 다음과 같은 결론을 얻었다. 1) 조제된 염화철 코팅 활성탄의 표면을 SEM으로 분석한 결과를 보면 활성탄의 표면에 염화철이 코팅되어 있는 것을 확인할 수 있었다. 2) 통수유속이 0.5~4 BV $hr^{-1}$/로 낮을 경우는 질산성 질소 파과시점이 비슷하였으며, 통수유속이 커질수록 활성탄의 비표면적에 접하는 시간이 짧아져서 파과시점이 짧아진 것으로 사료된다. 3) 연속컬럼 실험(3.1 L)에서 통수량 약 82 L까지는 ${NO_3}^{-}$/-N의 파과시점이 나타나지 않았으며 재생액의 농도가 0.5 M-KCl에서는 약 9 L, 1 M-KCl에서는 약 7 L의 재생액이 사용되었고, 재생 후 각각의 파과시점은 약 53 L, 59 L로 유지되었다. 1 M-KCl의 재생액을 사용하여 재생하였을 경우 두번째 재사용과 재생부터 총 질산성 질소 제거량은 약 1,531~l,357 mg/kg, 탈착량은 약 1,526~1,306 mg/kg으로 일정하였다.

  • PDF

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Removal of Nickel from the Etching Waste Solution of Ferric Chloride (엣칭용 염화제2철 폐액중의 니켈제거)

  • Doh, Yong-Il;Jeung, Woo-Won;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.614-622
    • /
    • 1996
  • Efficient removal of nickel from the ferric chloride etching solution has been studied. At first, $Fe^{3+}$ was reduced to $Fe^{2+}$ by the electrolytic iron flake or the waste shadow mask iron plate. And then, $Ni^{2+}$ was removed from the solution by electrolytic iron powder. Under the optimum conditions the reduced rates of nickel were 99 % and 98%, respectively at the initial $Ni^{2+}$ concentrations of 1.0% and 0.1%. Sludge formed during reduction of $Fe^{3+}$ in the solution were analyzed by XRD and SEM.

  • PDF

Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride (염화(鹽貨)구리와 염화철(鹽貨鐵) 혼합용액(混合溶液)의 조성(組成)이 pH와 용액전위(溶液電位)에 미치는 영향(影響))

  • Lee, Man-Seung;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2008
  • In order to simulate the leaching solution of copper sulfide ore in $FeCl_3$ solutions, synthetic solutions with composition of $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$ were prepared. The concentration of iron and copper chloride was varied from 0.1 to 1 m in synthetic solutions. The effect of composition on the mixed solution pH and potential at $25^{\circ}C$ was measured. When HCl concentration was constant, the increase of CuCl concentration increased solution pH. The increase of other solutes excluding HCl and CuCl decreased solution pH owing to the increase of the activity coefficient of hydrogen ion. A high CuCl concentration favored the redox equilibrium in the direction of Cu(I), while $FeCl_3$ had the opposite effect.

에어로졸 반응기 내에서 철 초미립자의 성장 특성

  • 박균영;장희동;최청송
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.7-11
    • /
    • 1997
  • 직경 3.5 cm, 길이 1.5 m 의 석영관 내에서 염화제1철 증기를 수소로 환원하여 철 초미립자를 제조하였다. 염화제1철의 증발조건, 염화제1철 증기와 수소의 혼합방법, 반응물의 예비가열온도, 반응온도, 염하제1철의 농도, 반응기내 체류시간이 생성된 철 입자의 크기 및 크기분포에 미치는 영향을 조사하였다. 철 입자의 평균직경은 40-88 cm 이고, 기하표준편차는 1.4 정도로 나타났다. 철 입자들은 자기적 성질에 의해 서로 연결되어 체인을 형성하였으며, 전자회절분석 결과 단결정이었다. 평균입경 55nm 철 입자들의 항자력은 900 Oe, 포화자화값은 130 emu/g 이었다.

  • PDF

Separation of Iron and Nickel from Heavily Concentrated Aqueous Ferric Chloride Solution by Liquid-liquid Extraction (염화 제2철 농축 수용액으로부터의 액-액 추출에 의한 철과 니켈의 분리)

  • Park, Moo-Ryong;Kim, Young-Wook;Park, Jae-Ho;Park, Chin-Ho
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.274-280
    • /
    • 2007
  • A liquid-liquid solvent extraction process was developed in this study to recover Fe and Ni from heavily concentrated aqueous ferric chloride solution, in an effort to substitute the conventional iron reduction method. Solvent composition and extraction conditions were first developed from the laboratory experiments, and the pilot system was designed and built for commercialization. Stage numbers for extraction and stripping were determined from pilot plant runs, and other operation data were obtained for mass production.

  • PDF

Removal of Iron from Ilmenite through Selective Chlorination Using PVC (PVC에 의한 일메나이트 광석 중 선택염화에 의한 Fe의 제거)

  • Son, Yongik;Ring, Rie;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.74-81
    • /
    • 2016
  • Study on chlorination of ilmenite ore were carried out by using PVC(polyvinyl chloride) as the chlorinating agent in a static bed reactor for selective removal of iron. The effect of amount of PVC and reaction temperature were investigated. It was found that the removal ratio of iron increased with amount of PVC and temperature. After reaction with HCl gas generated from PVC, porous surface of the specimens were observed. As a result, HCl gas could react with iron in the central portion of ilmenite particle through these pores. Examination of data using kinetic model suggest that the selective chlorination rate is controlled by chemical reaction at the interface of particles. The activation energy for the selective chlorination of ilmenite using PVC was calculated as 20.47 kJ/mol.

Kinetic Study on Preparation of Iron Fine Powders by Hydrogen Reduction of Ferous Chloride Vapor (염화물의 기상환원반응에 의한 미립질 철분말의 생성속도에 관한 연구)

  • Lee, Hwa-Yeong;Kim, Seong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.385-391
    • /
    • 2000
  • A kinetic study on the preparation of iron powder by hydrogen reduction of ferrous chloride vapor has been carried out both experimentally and theoretically. For the preparation of iron powder, ferrous chloride was vaporized and transported to a reaction zone by Ar gas used as carrier. Ferrous chloride vapor and hydrogen were mixed and subject to a reduction reaction at high temperature to produce iron powder and HCI gas. Iron powder was collected with organic solvent at the end of reaction zone and HCI gas was also absorbed in a caustic soda solution to determine the conversion ratio of ferrous chloride. For the development of rate equations, a 1st-order reaction and equilibration of ferrous chloride vapor with Ar gas were assumed. According to the results, the rate constant, k could be expressed as $k=7,879exp(-53,840/RT)\textrm{dm}^3/mole.sec$ and the activation energy was found to be 53.84kJ/mole. From TEM observation, the particle size distribution of iron powder produced was found to be in the range of $0.1~1.0{\mu\textrm{m}}$ which was not significantly influenced by reaction temperature or gas flow rates.

  • PDF