• Title/Summary/Keyword: 염화철(III)

Search Result 23, Processing Time 0.025 seconds

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride (염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성)

  • Taehyoung Kim;Sung-Ho Jin;Jongwook Park;Yeong-Soon Gal
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2024
  • An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride (염화(鹽貨)구리와 염화철(鹽貨鐵) 혼합용액(混合溶液)의 조성(組成)이 pH와 용액전위(溶液電位)에 미치는 영향(影響))

  • Lee, Man-Seung;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2008
  • In order to simulate the leaching solution of copper sulfide ore in $FeCl_3$ solutions, synthetic solutions with composition of $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$ were prepared. The concentration of iron and copper chloride was varied from 0.1 to 1 m in synthetic solutions. The effect of composition on the mixed solution pH and potential at $25^{\circ}C$ was measured. When HCl concentration was constant, the increase of CuCl concentration increased solution pH. The increase of other solutes excluding HCl and CuCl decreased solution pH owing to the increase of the activity coefficient of hydrogen ion. A high CuCl concentration favored the redox equilibrium in the direction of Cu(I), while $FeCl_3$ had the opposite effect.

Arsenic Removal using the Surface Modified Granular Activated Carbon treated with Ferric Chloride (염화철(III)로 표면개질 활성탄을 이용한 비소제거)

  • Park, Y.R.;Hong, S.H.;Kim, J.H.;Park, J.Y.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The present study investigates treatment methods for removal of arsenic from wastewater. The granular activated carbon (GAC) with the coating of iron chloride ($FeCl_3$) was used for the treatment of a low concentration of arsenic from wastewater. Batch experiments were performed to investigate the synthesis of Fe-GAC (Iron coated granular activated carbon), effects of pH, adsorption kinetics and the Langmuir model. The synthesized Fe-GAC with 0.1 M $FeCl_3$ shows best removal efficiency. Adsorption studies were carried out in the optimum pH range of 4-6 for arsenic removal. The Fe-GAC showed promising results by removing 99.4% of arsenic. In the adsorption isotherm studies, the observed data fitted well with the Langmuir models. In continuous column study showed that As(V) could be removed to below 0.25 mg/L within 1,020 pore volume. Our results suggest that the surface modified granular activated carbon treated with $FeCl_3$ for effective removal of arsenic from wastewater.

Comparison of Solvent Extraction of Iron(III) from Chloride Solution between Alamine336 and TBP by Using Extraction Isotherm (등온적출곡선(等溫摘出曲線)에 의한 염산용액(鹽酸溶液)에서 TBP와 Alamine336의 철 추출(抽出) 비교(比較))

  • Lee, Man-Seung;Kwak, Young-Ki
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • Solvent extraction behaviors of iron(III) from chloride solution at high ionic strength condition between Alamine336 and TBP were compared by using MaCabe-Thiele diagram. Extraction isotherms of iron by the two extractants were obtained by calculating the equilibrium concentrations of iron in both phases from the initial extraction conditions. In calculating the equilibrium concentration of iron, chemical equilibria in the aqueous phase and mass balance together with the solvent extraction reaction were considered. MaCabe-Thiele diagram of iron by 1M Alamine336 indicated that two extraction stages could lead to complete extraction of 0.5M iron from 3M HCl solution at an A/O ratio of 6/5. The extraction power of 1M Alamine336 was found to be the same as 2-3M TBP. MaCabe-Thiele diagram together with the physical properties of the two extractants indicated that Alamine336 is superior to TBP in extracting ferric iron from chloride solution.

Asymmetric Ring Opening Reaction of Racemic Epoxides by Polymeric Chiral Salen Catalyst containing Metal Salts (금속염 함유 고분자형 키랄 살렌촉매에 의한 라세믹 에폭사이드의 광학선택적 비대칭 고리열림반응)

  • Lee, Kwang Yeon;Rahul, B. Kawthekar;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.562-567
    • /
    • 2007
  • The stereoselective synthesis of chiral terminal epoxide is of immense academic and industrial interest due to their use as versatile starting materials as well as chiral intermediates. In this study, new polymeric chiral Co(salen) complexes bearing tallium (III)chloride and iron (III)chloride (ferric chloride) have been synthesized and characterized. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of various terminal epoxides using water and phenol derivatives as nucleophiles. The easily prepared polymeric complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ and phenol nucleophiles, providing enantiomerically enriched terminal epoxides (> 98% ee). The system described in this work is very efficient for the synthesis of chiral epoxide, 1,2-diol and ${\alpha}$-aryloxy alcohol intermediates.

Performance Relationship of Iron-Based Anolyte According to Organic Compound Additives and Polyoxometalate-Based Catholyte in an Aqueous Redox Flow Battery (유기화합물 첨가제에 따른 철 기반 양극과 polyoxometalate 음극 기반 수계 레독스 흐름 전지의 성능 관계)

  • Seo Jin Lee;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.255-259
    • /
    • 2024
  • In this study, an aqueous-based redox flow battery (RFB) was constructed using tungstosilic acid (TSA), which is a kind of polyoxometalate, as the negative electrode active material and iron chloride (FeCl3) as the positive electrode active material in a sulfuric acid (H2SO4) supporting electrolyte. As a result of the cell's performance, it exhibited capacity fading and low energy efficiency. To address these issues, malic acid (MA), an organic additive, was introduced to the positive electrode active material and then tested for electrochemical properties and single cell performance. The malic acid in the iron chloride aqueous solution is working as a chelate agent, and two carboxyl groups are effectively coordinated with iron ions. It was found that MA reduced the electrolyte resistance of the positive electrode active material, leading to chemical stabilization and an increase in capacity and energy efficiency.

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts (금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성)

  • Choi, Jae Hyung;Park, Yong Beom;Lee, Suk Hee;Cheon, Jae Kee;Choi, Jae Wook;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.643-648
    • /
    • 2010
  • Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.