• Title/Summary/Keyword: 염화물 확산

Search Result 192, Processing Time 0.025 seconds

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

A Method on the Rapid Assessment of Resistance to Chloride Ion Penetration for Mortar and Concrete with Mineral Admixtures (혼화재를 사용한 모르타르 및 콘크리트의 염소이온 침투 저항성 평가)

  • Park Jung-Jun;Kim Sung-Wook;Koh Kyung-Taek;Lee Jong-Suk;Lee Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.485-492
    • /
    • 2004
  • In this study, ASTM C 1202 which is most commonly used for evaluating the penetration resistance into the concrete is reviewed. The test results by ASTM C 1202 showed that the passed charge could be underestimated as the $OH^-$ ion concentration in the concrete is lowered when the concrete is mixed with the admixtures. Therefore, the modified method using the distilled water was proposed in the paper. According to the test results, the modified method is not susceptible to $OH^-$ ion and temperature rise. In addition, the long term emersion test for the concrete mixed with the admixtures in the NaCl solution showed that the chloride diffusion coefficient tested by the modified method have higher correlation compared to the conventional ASTM method.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Study on the Water Penetration in Mortar by Water Pressure (수압에 따른 모르타르내 수분침투에 관한 연구)

  • Yoo, Jo-Hyeong;Lee, Han-Seung;Cho, Hyeong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-508
    • /
    • 2008
  • Concrete is a type of porous materials and is physically and chemically damaged due to exposure to various environments from the placing to the service life. These reactions affect the corrosionof steel bars applied in concrete and that decreases the durability life and strength of such steel bars. Thus, it is very important to insert rust inhibitors into steel bars in the case of a deterioration element that exceeds the critical amount of corrosion in the location of steel bars. However, it is very difficult to guarantee corrosion resistance at the location of steel bars using conventional technology that applies corrosion inhibitors only on the surface of concrete. This study attempts to develop a method that penetrates corrosion inhibitors up to the location of steel bars and investigate the penetration depth of corrosion inhibitors by verifying moisture migration in concrete under an applied pressure.

  • PDF

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도 콘크리트의 내구특성 예측)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the mechanical and durability test such as compressive/tensile/flexural strength test, chloride ion diffusion, chemical attack and repeated freezing and thawing, carbonation test. In the mechanical tests, 10~15% for binder is optimum substitute rate. And, in the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient was more reduced. In the chemical attack test, by the filler effect of fine powder such metakaolin and silica-fume, the resistance is more excellent than normal concrete. In the other durability test, the concrete using metakaolin also compared with those of silica-fume substitute concrete. Through these tests, we recognized that metakaolin can be used as a substitute for silica-fume.

The Inhibitive Effect of Electrochemical Treatment Applied to Fresh/hardened Concrete (철근 부식 방식을 위한 굳지 않은/굳은 콘크리트의 전기방식 적용에 관한 연구)

  • Kim, Sung-Wook;Moon, Jae-Heum;Ann, Ki-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.67-76
    • /
    • 2013
  • In this study, the inhibitive effect of electrochemical treatment subjected to fresh and hardened concrete and literature reviews in terms of the treatment were performed. In hardened concrete, chloride ions are mixed during casting to destroy the passivity of steel, and then the current was provided for 2 weeks with 250, 500 and $750mA/m^2$. After completion of electrochemical treatment, the extraction of chloride ions was quantified and repassivation of steel was observed. Simultaneously, the equated levels of current density for 2 weeks were applied to fresh concrete. Steel-concrete interface in concrete was observed by BSE image analysis and the concrete properties in terms of the diffusivity of chloride ions and the resistance of steel corrosion was measured. As the result, electrochemical treatment is very effectiveness to rehabilitate the passive film on the steel surface and 63-73% of chloride ions in concrete were extracted by the treatment. As the treatment was applied to fresh concrete, the resistance of steel corrosion was improved due to the densification of $Ca(OH)_2$ layers in the vicinity of steel. However, an increase in the current density resulted in an increase in surface chloride content of concrete.

A Chloride Ion Diffusion Model in Blast Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물이온 확산모델)

  • 이석원;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.467-472
    • /
    • 2000
  • It is known that chloride ion in concrete destroys the passive film of reinforcement inside concrete and accelerates corrosion which is the most influencing factor to durability of concrete structures. In this thesis, a chloride ion diffusion model for blast furnace slag(BFS) concrete, which has better resistance to both damage due to salt and chloride ion penetration than ordinary portland cement concrete, is proposed by modifying existing model of normal concrete. Proposed model is verified by comparing diffusion analysis results with both results by indoor chloride penetration test for specimens and field test results for actual RC bridge pier. Also, the optimum resistance condition to chloride penetration is obtained according to degrees of fineness and replacement ratios of BFS concrete. As a result, resistance to chloride ion penetration for BFS concrete is more affected by replacement ratio than degree of fineness.

  • PDF

The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement (혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성)

  • Yang, Seung-Kyu;Kim, Dong-Seuk;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

Durability Life Prediction of Concrete Subjected to Freezing-Thawing and Chloride Attack (동결융해와 염해에 따른 복합열화를 고려한 콘크리트의 내구수명 예측)

  • Hwang, Hyo-Jae;Park, Dong-Cheon;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.97-101
    • /
    • 2008
  • As the number of concrete building structures in marine environment increases, it is important to study and predict the durability and the compound deterioration of the concrete which is exposed in both chloride and freezing-thawing damage. The concrete's resistance against freezing and thawing is tested based on KS F 2456, while its chloride ion diffusion coefficient is evaluated based on NT BUILD 492. In result, the more exposure to freezing and thawing process, the shorter life it gets, due to the increased amount of chloride ion diffusion coefficient.

  • PDF