• Title/Summary/Keyword: 염화물 이온 침투

Search Result 111, Processing Time 0.025 seconds

The Diffusion Property of Chloride Ion into Concrete by Electrically Accelerated Method (전기적인 촉진시험에 의한 콘크리트의 염화물이온 확산특성)

  • Bae, Ju-Seong;Park, Gook-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.138-143
    • /
    • 2010
  • Recently, as many big marine concrete structures increase, it is necessary that chloride ion diffusion coefficient of concrete shall be evaluated but it will take a long time to evaluate chloride ion diffusion coefficient of concrete. Accordingly, many test methods are suggested to evaluate chloride ion diffusion coefficient in a short period time by the promotion in electro chemical ways but the systematic study for this is insufficient. Therefore, this study evaluates chloride ion penetration and diffusion features by three representative electric promotion tests targeting for three different cements whose ingredients are different and analyzes the correlationship between them. As a result, diffusion features of chloride ion varied according to the cement ingredients and three ingredients cement in which blast furnace slag powder and fly ash are mixed in constant ratio, which shows the most excellent cement diffusion properties. For diffusion properties of chloride ion, the correlationship between test methods are good.

Effect of Initial Flexural Crack on Resistance to Chloride Penetration into Reinforced Concrete Members (초기 휨균열이 철근콘크리트 부재의 염화물침투저항성에 미치는 영향)

  • Yang, Eun Ik;Jin, Sang Ho;Kim, Myung Yu;Choi, Yoon Suk;Han, Sang Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • In this study, the chloride penetration tests were performed for the initially cracked reinforced concrete members. The chloride diffusion characteristics and the critical crack width are compared, and the properties of self-healing are investigated. According to the test results, the chloride penetration resistance was greatly reduced as the surface crack width increased. When the mineral admixtures are added, the chloride penetration resistance of uncracked specimens were effectively increased, however, in case of the blast furnace slag and fly ash, the cracked specimens showed the more reduced resistance than OPC case, inversely. Also, the critical width was $29{\mu}m$, on average, for immersion test. The crack width with $4{\sim}15{\mu}m$ was restored by self-healing, The parts restored by self-healing were seemed to be visually restored, however, the chloride penetration resistance was not restored, perfectly.

Applicability of Colormetric Method for Estimation of Chloride Penetration in Concrete Structures (콘크리트 구조물의 염화물 침투 특성 파악을 위한 변색법의 적용성)

  • Yang Eun-Ik;Kim Myung-Yu;Leem Young-Moon;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.931-938
    • /
    • 2005
  • When concrete structures are exposed under marine condition for a long time, the steel in concrete is corroded due to the ingression of chlorides in the seawater. Because the damages of corrosion resulting from the chloride ion are very serious, many researches have been performed. Silver nitrate colormetric method that can measure easily penetration depth of chloride ion has been executed, recent)y. However, characteristics of silver nitrate colormetric method were not fully examined. Therefore, the objective of this paper Is to study the applicability of colormetric method. For the purpose of this, effect factors and reaction mechanism of colormetric method were investigated, and the colormetric method is applied for marine concrete structures. According to the results of silver nitrate colored method, two reactions such as white reaction of AgCl and brown reaction of AgOH were shown when $AgNO_3$ was sprayed in splited section. And velocity constant ratio(K) of two reactions appeared that white reaction, AgCl reacts with the fast speed by 3240. When the colormetric method was applied in concrete, it is reasonable that $AgNO_3$ solution more than 0.05N concentration was sprayed. It is confirmed that the colormetric method is useful tool for estimating the chloride of concrete structures in situ. The average chloride amount of colored parts indicates $0.9kg/m^3$ per concrete unit weight.

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections (중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석)

  • Zhu, Xingji;Kim, Soye;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.66-74
    • /
    • 2016
  • The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

Evaluation of Chloride Ion Penetration Characteristics for Concrete Structures at Coastal Area (해안지역 콘크리트 구조물의 염소이온침투특성 평가)

  • Han, Sang-Hun;Yi, Jin-Hak;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • A major source of durability problems in concrete structures is the corrosion of steel by the damage of passivity layer around steel bars. As chloride ion penetration is major cause of the destruction of passivity layer, evaluation of depth and concentration profile of chloride ion is the essential factor for the service-life estimation of concrete structure. To estimate chloride ion penetration characteristics, this paper on the basis of in-situ experimental data investigated the depth and concentration profile of chloride ion penetration. The core specimens are obtained at air-zone, splash zone, and tidal zone in Wando, Masan, Incheon, Gwangyang, and donghae harbors. Colorimentric method measured the chloride ion penetration depth and ASTM C 114 evaluated the concentration profile of chloride ion. Based on experimental data, the influence of harbor location and exposure condition on chloride ion penetration is evaluated.

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

Field Application of the Corrosion Protection Method for Marine Concrete with Nano-Silica (Nano-Sillica를 이용한 해양콘크리트 방식공법 현장 적용)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon;Kim, Jong-Baek;Jo, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.399-400
    • /
    • 2009
  • This study arranged the result corrosion inhibition using Nano-silica for efficient prevention to diffusion of chloride ion. For the results, significant difference was not found on slump and air content, and there were superior effect to preventing diffusion of chloride ion on hardened concrete. It seemed to be Nano-silica prevented diffusion of chloride ion.

  • PDF

Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria (박테리아 흡착 팽창질석을 혼입한 모르타르의 염소이온 침투 저항성)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.151-152
    • /
    • 2017
  • This tests examined the effectiveness of bacteria slime on the chloride ion penetration resistance of cement mortar. Test results exhibited that the chloride ion penetration depth of mortars including 5% expanded vermiculite immobilizing bacteria was 17% smaller than that of the control mortar without expanded vermiculite.

  • PDF

Strength and Durability of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 강도 및 내구성)

  • 주명기;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Effect of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural and compressive strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and reaches a maximum at a slag content of 40 %, and is inclined to increase with increasing polymer-binder ratio. Water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content. Accordingly, the incorporation of slag into polymer-modified mortars at a slag content of 40% is recommended for a combined wet/dry curing regardless of the types of polymer.