• Title/Summary/Keyword: 염화물 이온 침투성

Search Result 94, Processing Time 0.021 seconds

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

A Study on the Cover Property of Offshore Reinforced Concrete Structure (내구성 해양 RC 구조물의 철근 피복적정성에 관한 연구)

  • Im, Jung-Soon;Bahng, Yun-Suk;Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.73-81
    • /
    • 2004
  • On this study, durability decreasing element caused by salt damage was analyzed elementally and studied with the data of the inside and outside in the country. The design strength and water-cement ratio according to diffusion coefficients of chloride were applied to Fick's diffusion equation. The required over depended on environmental conditions is estimated with endurance period, and the influences on cover according to the transformation of the each parameter were investigated. In consequence, if water-cement ratio decreases and design strength increases, it shows that slowing infiltration velocity of chloride ion can decrease required cover. Especially, it is more effective to use Portland blast-furnace slag cement into high strength concrete in the splash zone environmental conditions in blocking the diffusion of chloride ion. As the result, in the case of the offshore concrete structure needed high durability, it is needed to increase cover($3cm{\sim}8cm$) than minimum standard cover(8cm) according to environmental conditions.

Chloride Penetration Resistance of Ternary Blended Concrete and Discussion for Durability (삼성분계 혼합콘크리트의 염화물 침투 저항성 및 내구성에 대한 고찰)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Kim, Jae-Hwan;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.439-449
    • /
    • 2008
  • Mineral admixtures are used to improve the quality of concrete and to develop sustainability of concrete structures. Supplementary cementitious materials (SCM), such as silica fume (SF), granulated blast furnace slag (GGBS) and pulverized fly ash (PFA), are gradually recognized as useful mineral admixture for producing high performance concrete. The study on ternary blended concrete utilizing mainly three major mineral admixtures is limited and the study on durability and chloride induced corrosion resistance of ternary blended concrete is very few. This study examines the durability characteristics of the ternary blended concrete composed of different amount of the SCM with ordinary Portland concrete and the study experimentally focuses on corrosion resistance evaluation of ternary blended concrete subjected to chloride attack. In this study, 50% replacement ratio of mineral admixture to OPC was used, while series of combination of $20{\sim}40%$ GGBS, $5{\sim}15%$ SF and $10{\sim}45%$ PFA binder were used for chloride corrosion resistance test. This study concerned the durability properties of the ternary blended concrete including the corrosion resistance, chloride binding, chloride transport and acid neutralization capacity. It was found that the ternary blended concrete utilizing the SCM densified the pore structures to lower the rate of chloride transport. Also, increased chloride binding and buffering to acid were observed for the ternary blended concrete with chlorides in cast.

An Experimental Study on the Engineering Characteristics of Ternary Lightweight aggregate Mortar Using Recycling Water (회수수를 사용한 3성분계 경량 골재 모르타르의 공학적 특성에 관한 실험적 연구)

  • Lee, Jae-In;Bae, Sung-Ho;Kim, Ji-Hwan;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This study uses the recovered water as mixing water and artificial lightweight aggregate pre-wetting water as part of a study to increase the recycling rate and reduce greenhouse gas of the ready-mixed concrete recovered during the concrete transport process, and cement fine powder of blast furnace slag(BFS) and fly ash(FA). The engineering characteristics of the three-component lightweight aggregate mortar used as a substitute were reviewed. For this purpose, the flow, dry unit mass, compressive strength, drying shrinkage, neutralization depth, and chloride ion penetration resistance of the three-component lightweight aggregate mortar were measured. When used together with the formulation, when 15 % of BFS and 5 % of FA were used, it was found to be positive in improving the compressive strength and durability of the mortar.

Chloride Penetration Analysis of Fly Ash Concrete using Potentiometric Titration and XRF (플라이애시를 혼입한 콘크리트의 전위차 적정법과 XRF를 이용한 염화물 침투 분석 )

  • Eun-A Seo;Ji-Hyun Kim;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.16-22
    • /
    • 2023
  • In this study, a salt water immersion test was performed on concrete specimens simulating the concrete mix design of the nuclear power plant, and the correlation between the amount of chloride and the XRF component according to the depth of the concrete was analyzed. The amount of chloride on the surface of the nuclear power plant concrete increased slightly with increasing immersion time in salt water, but the amount of chloride in the depth of 5.5 mm or more showed a clear tendency to increase with increasing immersion time in salt water. As a result of analyzing the correlation between the amount of chloride in concrete and the XRF component, the concrete with 20% FA substitution compared with the OPC concrete showed a very high correlation between the composition ratio of Cl ions and the evaluation result of salt damage resistance by XRF component analysis. Accordingly, it was confirmed that chlorine ion analysis and salt damage resistance performance evaluation by XRF component analysis were possible through repeated data accumulation in the nuclear power plant concrete mix with 20% fly ash replacement.

A Method on the Rapid Assessment of Resistance to Chloride Ion Penetration for Mortar and Concrete with Mineral Admixtures (혼화재를 사용한 모르타르 및 콘크리트의 염소이온 침투 저항성 평가)

  • Park Jung-Jun;Kim Sung-Wook;Koh Kyung-Taek;Lee Jong-Suk;Lee Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.485-492
    • /
    • 2004
  • In this study, ASTM C 1202 which is most commonly used for evaluating the penetration resistance into the concrete is reviewed. The test results by ASTM C 1202 showed that the passed charge could be underestimated as the $OH^-$ ion concentration in the concrete is lowered when the concrete is mixed with the admixtures. Therefore, the modified method using the distilled water was proposed in the paper. According to the test results, the modified method is not susceptible to $OH^-$ ion and temperature rise. In addition, the long term emersion test for the concrete mixed with the admixtures in the NaCl solution showed that the chloride diffusion coefficient tested by the modified method have higher correlation compared to the conventional ASTM method.

Chloride Penetration of Concrete Mixed with High Volume Fly Ash and Blast Furnace Slag (FA 및 BFS를 다량 혼입한 콘크리트의 염분침투성)

  • Park, Ki-Cheul;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.90-99
    • /
    • 2015
  • This study examined dynamic and characteristics and chloride penetration of concrete mixed with large amount of FA and BFS, which are considered for positive application to construction fields with purpose of long-tern durability of concrete structures. As a result of strength test on FA and BFS, FA concrete showed higher increase of strength compared to OPC, when FA4000 and FA5000 were mixed 30%, respectively. For BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on FA and BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. For relation between compression strength and diffusion coefficient of FA and BFS concrete, as strength increased, diffusion coefficient decreased. In this study, when mixing FA and BFS to concrete for long-run durability and restraint against chloride penetration, for FA, mixing it to concrete with less or equivalent 30% of replacement rate was most efficient. And for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.

Estimation on Durability of 80MPa High Strength Concrete for Lotte Town in Pusan (부산 롯데타운용 80MPa급 초고강도 콘크리트의 내구성 평가)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Park, Eui-Soon;Kim, Gang-Ki;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.307-308
    • /
    • 2009
  • The ultra high strength concrete classed 80 MPa for Lotte Town at pusan has many hydrated materials due to low water to binder ratio and high admixture contents and improved void structure caused by C-S-H gel corresponding to pozzolan and latent hydraulicity of FA and BS. Moreover, durability of the concrete is superior because there was no penetration of carbon dioxide, chloride and chloric ion caused by its fine internal constitution.

  • PDF

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts (금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발)

  • Choi, Hong-Shik;Heo, Kwon;Lee, Ho-Beom;Lee, Si-Woo;Kwak, Hong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.