• Title/Summary/Keyword: 염화물이온 투과성

Search Result 12, Processing Time 0.023 seconds

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

A Study on Corrosion Resistance of the Reinforement in Concrete Using Blast-Furnace Slag Powder (고로슬래그미분말을 사용한 콘크리트의 염화물이온에 의한 철근부식 저항성 연구)

  • Kim Eun-Kyun;Kim Jin-Keun;Lee Dong-Hyuk;Kim Young-Ung;Kim Yong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.1-9
    • /
    • 2004
  • This paper represents the permeability of chloride ions and the corrosion performance in the concrete blended with granulate blast furnace slag exposed to chloride environment. An ordinary cement (type I ) and sulfate resisting cement(type V) were used for the experiment. The two cements were combined with $0\%$, $25 \%$, $40\%$, and $55\%$ of the granulated blast furnace slag. The accelerated permeability tests of chloride ions were performed in accordance with ASTM C1202, and the accelerated corrosion tests of steel were carried out by using the method of immersion/drying cycles. After water curing 28 days, 56 days and 91 days, these tests were conducted until 30 cycles. In every cycle, test specimens were wetted in $3\%$ NaCl solution for three days and dried again in $60^{\circ}C$ air for four days. As an experimental results, the diffusion coefficient of chloride ions of the ordinary cement Concrete Combined granulated blast furnace slag was much lower than that of non granulated blast furnace slag concrete. Moreover, the diffusion coefficient of chloride ions of sulfate resisting cement concrete was higher than that of ordinary cement concrete. On the basis of the results of accelerated corrosion tests, corrosion resistance of the concrete mixed with granulated blast furnace slag shows good to corrosion resistance, however, the concrete with sulfate resisting cement shows bad to corrosion resistance.

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections (중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석)

  • Zhu, Xingji;Kim, Soye;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.66-74
    • /
    • 2016
  • The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

A Study on the Permeability and Chloride lon Penetration of Concrete (물-시멘트비에 따른 콘크리트의 투과성 및 염화물 이온의 침투성에 관한 연구)

  • 형원길;소형석;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.179-184
    • /
    • 1998
  • The permeability of concrete influences the durability of concrete remarkably. This paper describes a programme of permeability tests carried out to determine the differences between permeability coefficients derived using water, oxygen and chloride ions. Tests have been carried out on three concretes having water/cement ratios of 0.45, 0.55, 0.65 to measure their water, chloride-ion and gas permeability coefficients. The test results indicate that the permeability of concrete increase with the increase water cement ratios. The water and gas permeability coefficients is presented from $1.43$\times$10^{-10} to 19.01$\times$10^{-10}m/s$ and from $0.88$\times$10^{-10}$ to $1.59$\times$10^{-10}$m$^2$for concrete of different water cement ratios. The current intensity passing through the concrete is presented from 4504 to 4920 C.

  • PDF

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

A Study on the Performance Evaluation of Precast Concrete Box Culvert with Blast Furnace Slag (고로슬래그를 이용한 프리캐스트 콘크리트 박스암거의 성능평가에 관한 연구)

  • Kim, Doo Hwan;Jung, Jun Young;Kim, Sung Pil;An, Man Bok;Tae, Gi Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 프리캐스트 콘크리트 박스 암거는 현장 타설식 암거에 비해 구조물의 고품질화 및 반복적인 대량생산으로 원가 절감과 건식화 시공으로 인한 공정의 단순화와 공기가 단축되는 이점을 지니고 있다. 따라서 본 연구는 상재 허용하중을 확보하고, 시공성 및 내구성이 뛰어나며, 경제성을 고려한 고성능 프리캐스트 박스 암거를 개발하고 향후 고성능 프리캐스트 박스 암거를 생산하기 위한 기초적인 자료를 제시하고자 하였다. 본 연구에서는 기존의 보통 포틀랜드 시멘트를 이용한 프리캐스트 박스 암거의 경제성 및 내구성, 강도특성을 개선하고자 고로슬래그를 이용하여 최적의 배합비를 산출하고, 이를 토대로 중성화, 염해, 동결융해 등의 시험을 통해 내구성을 확보하고, 휨 성능을 확인하고자 실물박스암거를 제작하여 외압강도시험을 실시하였다. 또한 구조해석을 통해 응력검토를 하였다. 내구성 검토 결과, 분말도 $6,000cm^2/g$을 가진 고로슬래그 미분말을 50%로 혼입한 콘크리트가 보통 포틀랜드 시멘트를 사용한 콘크리트보다 염화물이온 투과성에 대한 저항성 및 동결융해 저항성 등 기초물성 및 내구성이 개선됨을 알 수 있었다. 박스암거에 대한 휨 시험 결과, OPC에 비해 GFSC6의 경우는 크게 구조적 성능이 떨어지지는 않는 것으로 나타났으며, 균열양상 및 연성도에서는 우수함을 나타냈다. ABAQUS에 의한 비선형 해석 결과는 시험체의 휨 거동을 잘 묘사하는 것으로 나타났으며, 처짐의 경우 시험체의 시험결과보다 크게 나타났지만, 처짐 양상은 비슷한 것을 알 수 있었고, 벽체와 상부 슬래브에 발생하는 응력은 부재가 허용하는 균열응력값 이내로 나타남에 따라 사용하중 상태에서의 응력검토는 안전한 것으로 판단된다.

  • PDF

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.