• Title/Summary/Keyword: 염해지역

Search Result 43, Processing Time 0.023 seconds

Changes of Salt Concentration by the Height of Ground Water Table on Disused Saltpan for Golf Course Construction Site (골프코스를 조성할 폐염전 매립지의 지하수위에 따른 토양산도 및 전기전도도 변화)

  • Lee, Dong-Ik;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.143-150
    • /
    • 2009
  • High salt concentration is one of the most important limit factor on plant growth at a disused saltpan for golf course construction site. The control of salt in soil is definitely required and the monitoring of salt concentration in soil and ground water also required to amend soil physiochemical properties. This research was carried out to monitor the pH and salt concentration changes by the height of ground water. By the physiochemical analysis test, the soil contains a high salt concentration and classified as a slight alkaline clay soil. The height of ground water table changed to 1.3m, 3.3m and 2.8m at dry season(mid-late June, 2005), monsoon season(early-mid July) and after monsoon(late July), respectively. Compare to the average ground level of 2.9m, the ground water was over flooded about OAm at monsoon season. The electrical conductivity(ECe) was measured above $4.0dS{\cdot}m^{-1}$ over all areas and however, some areas showed over $20dS{\cdot}m^{-1}$. During a monsoon season, ECe was lowered to $1.2{\sim}15.0dS{\cdot}m^{-1}$, compared with those of the dry season. Therefore, the interception of the capillary connection between planting layer and ground water which contains high salt concentration should be adapted when golf courses are constructed on disused saltpan. The phytotoxicity caused by salt damage may be controled by the interception of capillary fringe of salt flow to the topsoil profile at the upper layer of the ground water table.

Division of Soil Properties in Reclaimed Land of the Mangyeong and Dongjin River Basin and Their Agricultural Engineering Management (만경강과 동진강 유역 간척농경지 토양특성 구분과 농공학적 관리 대책)

  • Hwang, Seon-Woong;Kang, Jong-Gook;Lee, Kyung-Do;Lee, Kyung-Bo;Park, Ki-Hun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 2012
  • The physical and chemical properties of soil in the Mangyeong and Dongjin river basin had been investigated in order to establish the most optimum soil improvement plan on the reclaimed land. The total soil area by reclamation in Saemangeum basin is 113,971 ha. The classification by the distribution of soil series and soil texture is as following. 13 soil series including Chonnam, Buyong and Chonbuk series are period-unknown areas. Regarding the soil texture, they are fine silty ~ clayey very fine. From 1920s to 1960s, Mangyeong, Gwanghwal and Chonbuk series had coarse silty textured soil. After the 1970s, Mangyeong, Gwanghwal, Munpo, Yeompo, Poseung, Gapo and Hasa series have more sandy soil ~ moderately coarse loamy textured soil. Regarding the chemical properties, the concentrations of EC, Exch. $K^+$, $Mg^{2+}$, $Na^+$ and pH are high regardless of the time of reclamation. On the other hand, organic matter (OM) of top soil were 3.3~16.1 g $kg^{-1}$. The organic matter contents were very low though the soil had been farmed for a long time. Furthermore, the deep soil had almost no organic matter with 5.6~1.1 g $kg^{-1}$. The reason is believed that there had not been any movement of OM and clay because pressure or induced pans had been formed by large agricultural machineries and poor vertical drain. Regarding the forming of illuvial horizon (B layer) which tells the development extent of soil, only in the Hwapo reclaimed area where rice had been cultivated for past 90 years, Fe and Mn from top soil are deposited at underground 20~30 cm with 7~8 cm thickness by the movement of clay. It is believed that it had been possible because the earthiness is silty clay loam soil with relatively high content of clay. The soils are soil with concern of damage from sea water, soil on flimsy ground and sandy soil. Therefore, soil improvement for stable crop production can be expected; if the water table would be lowered by subsurface drainage, the water permeability would be enhanced by gypsum and organic matter, and the sandy soil would be replaced by red soil with high content of clay.

Growth and Physiological Response of Three Evergreen Shrubs to De-icing Salt(CaCl2) at Different Concentrations in Winter - Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus koreana - (겨울철 염화칼슘(CaCl2) 처리에 따른 가로변 3가지 상록 관목류의 생육 및 생리반응 - 사철나무, 영산홍, 회양목을 중심으로 -)

  • Ju, Jin-Hee;Park, Ji-Yeon;Xu, Hui;Lee, Eun-Yeob;Hyun, Kyoung-Hak;Jung, Jong-Suk;Choi, Eun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.122-129
    • /
    • 2016
  • It is important to know the sensitivity of shrubs to de-icing salt in order to set guidelines for ecological tolerance of evergreen shrubs along roads. Therefore, the aim of this study was to investigate the influence of de-icing salt, calcium chloride($CaCl_2$), on the growth and physiological characteristics of three evergreen shrubs, Euonymus japonica, Rhododendron indicum, and Buxus koreana. Plants were exposed to calcium chloride at different concentrations(weight percentage, 0% as control, 1.0%, 3.0%, and 5.0%) through amended soil maintained from the start of the experiment in October of 2014 until termination in March of 2015. The survival rate, plant height, leaf length, leaf width, leaf shape index, number of leaves, fresh weight, dry weight, dry matter, root/top ratio, chlorophyll contents, fluorescence, photosynthesis, stomatal conduct, and transpiration rate were recorded. Elevated calcium chloride concentrations decreased plant height, leaf length, leaf width, leaf shape index, fresh weight, dry weight, dry matter, and R/T ratio of the three shrubs. Root growth responded more sensitively than the top growth to salinity. However Euonymus japonica was more tolerant to salt stress than Rhododendron indicum and Buxus koreana. Their growths were totally inhibited by $CaCl_2$ above 3.0% and 1.0% concentrations, respectively. Chlorophyll content, fluorescence, photosynthesis, stomatal conduct, and transpiration rate of both Rhododendron indicum and Buxus koreana were reduced sharply, while Euonymus japonica exhibited mild reductions compared to plants grown in control when increasing calcium chloride was used. Especially, the transpiration rates of Rhododendron indicum, and the photosynthesis and stomatal conduct of Buxus koreana were suppressed as the concentrations of calcium chloride increased. Therefore, Euonymus japonica should be considered as an ecologically tolerant species with proven tolerance to de-icing salt.