• Title/Summary/Keyword: 염축적

Search Result 186, Processing Time 0.029 seconds

Effects of Various Calcium Salt Spray on Calcium Accumulation into Apple Fruits (Malus domestica Borkh.) (칼슘급원별 수관살포가 사과 과실의 칼슘축적에 미치는 영향)

  • Choe, Jong-Seung
    • The Journal of Natural Sciences
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 1993
  • This study was conducted to investigate the influence of various calcium salts on the accumulation of calcium in apple fruits when sprayed on whole tree. Differences in the total calcium contents of fruits were found between calcium sources and cultivars. In 'Tsugaru' , calcium nitrate, calcium chloride, and calcium carbonate were all effective but only calcium chloride and calcium carbonate appeared to be effective in 'Fuji' . Major parts of the applied calcium were accumulated in the feel and outer flesh. Ethylene evolution of fruit was retarded during storage with the increase of total calcium content in 'Fuji' fruit treated calcium acetate.

  • PDF

Induction of ${\beta}$-carotene by Ozone and Hydrogen Peroxide and Extraction Using Vegetable Oil from Microalga Dunaliella bardawil (미세조류 Dunaliella bardawil에서 오존과 과산화수소에 의한 ${\beta}$-carotene의 축적과 식용기름을 이용한 추출)

  • Yu, Gyeong-Won;Jeong, Uk-Jin;Jeong, Byeong-Cheol
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Halotolerant microalga Dunaliella bardawil was reported to massively accumulate the ${\beta}$-carotene, which protects cells from excess light intensity. Maximum specific growth rate of 0.168/hr was achieved when cells were cultivated at 1 N NaCl, pH 8.0, light intensity 80 ${\mu}E/m^{2}/s$, agitation 70rpm. For the effectiv accumulation of ${\beta}$-carotene, ozone ro hydrogen peroxide was added to media which was irradiated with white fuorescent lamps with moderate light intensity of 250 ${\mu}E/m^{2}/s$. As a result, maximum volumetric content of ${\beta}$-carotene was 324 ${\mu}$g/㎖. The ${\beta}$-carotene extraction efficiency of vegetable oils was in the order of olive oil, sesame oil, rice brain oil, corn oil, and soy bean oil. Sonication and warming was effective in ${\mu}$-carotene extraction and finally 96.9% of ${\beta}$ could be extracted using olive oil.

  • PDF

Removal of Mixed Cd, Cr, Cu, Ni and Zn by Hibiscus canabinas (Hibiscus canabinas를 이용한 Cd, Cr, Cu, Ni 및 Zn의 제거)

  • 최문술;임철호
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.120-126
    • /
    • 2004
  • Kenaf plants were hydroponically grown in reactor containing toxic metals as Cd, Cu, Cr, Ni and Zn to examine the ability to take up heavy metal. The plants were fertilized using a nutrient solution, which was appropriately adjusted to optimum pH, DO and conductivity. For n hydraulic retention time of 8 days, Cr, Cd, Cu, Ni and Zn were removed up to 90.5, 80.5, 66.1%, 71.1% and 79.4%, and reduced from 2.34 to 0.54 mg $L^{-1}$, 3.37 to 1.07 mg $L^{-1}$, 4.92 to 3.19 mg $L^{-1}$, 6.31 to 4.41 mg $L^{-1}$ and 6.27 to 2.09 mg $L^{-1}$. Especially, accumulation rate of Cr, Cd, Cu, Ni and Zn in the plant were measured up to 347.32, 275.39, 157.52, 50.48 and 211.01 mg DW kg $L^{-1}d^{-1}$, respectively. We considered that Kenaf plants removed Cr, Cd and Zn more effectively than other toxic metals applied.

Accumulation of Xanthosine-5'-monophosphate by Adenine-Guanine Double Auxotroph of Brevibacterium ammoniagenes (Brevibacterium ammoniagenes 의 아데닌-구아닌 복영양요구주에(複營養要求株)에 의한 5'-크산틸산(酸)의 축적(蓄積))

  • Kong, Un-Young;Woo, Hyung-Gu;Son, Choong-Hong;Bae, Jong-Chan;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.121-126
    • /
    • 1981
  • An adenine-guanine doubless and $\beta$-alanine requiring mutant, D-1550-40, which had been derived from Brevibacterium ammoniagenes ATCC 6872, produced a copious amount of xanthosine-5'-monophosphate (XMP). The optimum concentration of adenine and guanine for maximal accumulation of XMP was about 75 ml/l and 100 ml/l for growth. Concentrations higher than 100 mg/l of adenine and guanine inhibited cell growth and XMP accumulation strongly. The inhibition, however, could be recovered by adding $100{\mu}g$ of biotin per liter or 0.3% of casamino acids to the culture solution. High concentrations of phosphate and magnesium salts (1.0 to 1.5%(w/v) in media) were found to be indispensable for XMP accumulation, and the presence of manganese in the culture medium stimulated both growth of cells and accumulation of XMP leaving 5'-inosinic acid unaffected. The maximal accumulation of XMP reached to 60.5 mg/l after 4 days of fermentation which had been started with a medium containing 100 mg of adenine-guanine, 5 mg of $MnSO_4{\cdot}H_2O$ and $100{\mu}g$ of biotin per liter. The specific XMP synthesis(mg of XMP/mg of cells) was increased with the increase of the cell growth rate.

  • PDF

Parameters on Physiological Responses of Soybean (Glycine max Merr.) to Salinity (염분에 대한 콩의 생리학적 반응지표 연구)

  • Chon, Sang-Uk;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2003
  • The mechanism imparting salt tolerance to crop plants remains still unsolved, although soybean has been classified as a susceptible plant to NaCl. To determine optimum parameters on physiological responses for improving sensitivity of salinity in breeding program, soybean (Glycine max Merr., cv. "Gwan-gan") plants were grown in a greenhouse, treated 20 days after emergence for 7 days with NaCl at 0, 30, 60, and 90mM, corresponding to electric conductivity of 1.2, 4.4, 7.3, and 10.4 dS/m, respectively, and assessed 30 days after treatment. Chlorophyll contents were significantly decreased by NaCl ($0.4{\sim}1.0\;mg/g$) compared to control (1.2 mg/g). Photosynthesis rate by NaCl treatment at $0{\sim}90\;mM$ at flowering stage was ranged from 5.0 (control) to $9.6\;{\mu}mol/m^2/s$. Oxygen for respiration was consumed from 5.4 to $9.7\;{\mu}mol/m^2/s$ so that the ratio of $O_2$ (evolution:consumption) was increased with the increase of NaCl, indicating that $O_2$ consumption seems to go beyond $O_2$ evolution. Water potential of leaf at vegetative stage II was ranged from -0.6 to -1.8 MPa and the highest level was observed at mid-day. Water potential by salt stress was decreased with range of $-2.1{\sim}-2.7MPa$ compared to control. Transpiration was decreased from 17% to 20% by NaCl stress. Water vapor diffusing resistance of intercellular air space was affected significantly, increasing up to $16{\sim}24%$ compared to control by NaCl treatment. Salt-treated soybean tended to accumulate $Na^+$, specially in root, with reduced absorption of N, P, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ contents. Free proline content of soybean leaf as affected by different NaCl concentrations was increased 4.2 times ($184{\sim}434\;{\mu}g/g$) more than control. NaCl also increased activities of nitrate reductase and peroxidase by $28{\sim}161%$ and $3{\sim}22%$, respectively. The results show that physiological characteristics of soybean plants during assay were useful as the best parameters of salt stress or salt tolerance test to improve sensitivity in screening and breeding program among cultivars or germplasms.

Effects of Salt Treatment on Yield and Physiological Characteristics of Flag Leaf at Heading Stage in Winter Barley (보리 출수기 염처리가 수량 및 지잎의 생리적 특성에 미치는 영향)

  • 최원열;김영민;박종환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.409-412
    • /
    • 2002
  • This research was conducted to obtain the fundamental data on salt injury and different responses among cultivars in winter barley (Hordeum vulgare L.). Salts did not affect yield components including number of panicles, stem length, grain number per ear and grain yield while reduced stem dry weight and thousand seed weight significantly with increasing concentrations of salt from 60 to 180 mM. NaCl had less injury effect on barley straw dry weight and thousand seed weight than did $MgSO_4$. Chlorophyll content and relative turgidity in flag leaf were reduced when treated with both salts, while free proline in the salt-treated leaf was increased. Content of proline in salt-treated barley was about 10 folds compared to the control. Based on yield components and physiological traits of flag leaf, the tolerance to salt injury was the greatest in Baegdong, followed by Dongbori#1, Mogpo#55, and Gangbori. The results suggested that salt- stressed barley at reproductive stage had higher free proline content, and that special management in this stage must be considered because salt stress at heading stage affect flag leaf growth as well as yield components Harmfully.

The variational characteristics of Water Quality and Chlorophyll a Concentration in Kogum-sudo, Southern Part of Korean Peninsula (거금수도 양식어장의 해양환경 특성 2. 수질과 엽록소 양의 변동특성)

  • 윤양호;박종식;고남표
    • Journal of Aquaculture
    • /
    • v.13 no.1
    • /
    • pp.87-99
    • /
    • 2000
  • Field survey on the variational characteristics of water quality and chlorophyll a concentraion were carried out at the 25 stations for four seasons in Kogum-sudo(Straits) southern coast of Korean Peninsula from Feburuary to October in 1993. We made an analysis on biological factor as chlorophyll a concentraion as well as physicio-chemical factors such as water temperature salinity sigma-t transparency dissolved oxygen(DO) chemical oxygen demand(COD) nutrients (ammonia, nitrite, nitrate, phosphate, and silicate) N/P ratio and suspended solid(SS). The waters in the Kogum-sudo were not stratified due to the tidal mixing. And the high productivity in photic layer were supported by high nutrients concentration from bottom waters. The high concen-trations of suspended solid in straits had a bad influence upon marine biology of nature and cultivations. In Kogum-sudo had a sufficient nutrients for primary productivity during a year. Especially phosphate and inorganic nitrogen were high the other side silicate was very low. The source of nutrients supply depend on rather mineralization of organic matters and input of seawater from outside than input of freshwaters from lands. Phytoplankton biomass as measured by chlorphyll a concentratiion was very high all the year round and it was controlled by the combination o f several environmental factors especially of phosphate in summer and dissolved nitrogen in other seasons.

  • PDF

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

Biological Perchlorate Reduction in Municipal Sewage (도시하수에서 생물학적 퍼클로레이트의 환원)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.675-680
    • /
    • 2013
  • This research was done to evaluate the potential for destruction of perchlorate in municipal sewage. Laboratory experiments were conducted in flasks containing 3 liters of raw sewage. Sewage was mixed with defined amount of perchlorate and various additives. Perchlorate reduction in sewage did occur, but was quite variable, ranging from 0 to 72% over 72 hour. Addition of even a small amount of perchlorate acclimated biomass (167 mg/L SS) significantly reduced the lag and resulted in complete perchlorate removal. Perchlorate reduction in sewage-brine mixtures was inhibited when the dissolved oxygen level was greater than 2 mg/L, and when the mixture salinity was relatively high (conductivity = 14 mS with equivalent TDS = 8 g/L). When nitrate ($NO_3{^-}$) was present with perchlorate in the laboratory flask tests of sewage-brine mixtures, nitrate reduction proceeded first. A significant amount of nitrite ($NO_2{^-}$) accumulated in the sewage-brine mixtures, accounting for about 66% of initial nitrate nitrogen ($NO_3$-N).

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).