• Title/Summary/Keyword: 염소투입점

Search Result 3, Processing Time 0.022 seconds

Most suitable design method of post-chlorination process in portable water process by using CFD (전산유체를 활용한 정수공정에서 후염소 투입공정 최적설계 방안)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Post-chlorination for disinfection in portable water process is final process. The design factors of post-chlorination are inflow pipe line from tank of filtrated water to cleanwell, injection point of chlorine, appropriate shape of baffle in cleanwell for disinfection efficient improvement. Until now, we did not have the design standard for post-chlorination. we evaluated most suitable design method of post-chlorination process in portable water process by using computational fluid dynamics in this research. We found the result that the pipe to connect the cleanwell should be one. If pipe line split into two or more, uniform distribution of the flow is difficult. Second, optimal injection point of chlorine is the middle of pipe line to connect the cleanwell. Therefore, it is not economical to install chlorine contact basin in cleanwell. Third, the shape of baffle should be designed in order to water flows in one direction. And we found that it is better to design the low number of flow turning.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.