• Title/Summary/Keyword: 염소처리

Search Result 448, Processing Time 0.034 seconds

Antimicrobial Effects of Chlorine Dioxide Gas on Pathogenic Escherichia coli and Salmonella spp. Colonizing on Strawberries for Export (수출 딸기 중 이산화염소 가스 처리를 통한 병원성 Escherichia coli와 Salmonella spp. 저감화 효과)

  • Lee, Hyo-Sub;Shim, Won-Bo;An, Hyun Mi;Ha, Ji-Hyoung;Lee, Eun-Seon;Kim, Won-Il;Kim, Hwang-Yong;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.451-457
    • /
    • 2016
  • The purpose of this study was to determine the antimicrobial effects of $ClO_2$ gas on pathogenic E. coli and Salmonella spp. colonizing on the fruit surface of strawberries for export. Factorial design was employed to treat strawberries inoculated with pathogenic E. coli or Salmonella spp. with a combination of $ClO_2$ gas concentrations (10, 20, 30, 40, and 50 ppmv), RH (50, 70, and 90%), and treatment time (0, 5, 10, 20, and 30 min). Interaction between the factors was observed to note that the reduced levels of microbial population were the highest when RH is set at 90% with gas concentration- and treatment time-dependent manner. With RH and gas concentration fixed at 90% and 50 ppmv, the populations of E. coli and Salmonella spp. decreased by 2.07 and 2.28 log CFU/g when treated for 20 min whereas population reduction by 0.5 and 0.7 log CFU/g were observed when treated for 5 min, respectively. The results help establish most effective conditions for $ClO_2$ gas treatment to enhance microbial safety of strawberries for export.

The Effects of Calcinated Calcium Solution Washing and Heat Treatment on the Storage Quality and Microbial Growth of Fresh-cut Broccoli (신선편이 브로콜리의 품질과 미생물 성장에 영향을 주는 소성칼슘 용액 세척 및 열처리 효과)

  • Kim, Ji Gang;Nimitkeatkai, Hataitip;Choi, Ji Woen;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • This study was conducted to investigate the effect of calcinated calcium (CC) alone or combination with heat treatment on storage quality and microbial growth in fresh-cut broccoli. Fresh broccoli samples were cut into small pieces and washed in normal tap water (TW), $50{\mu}L{\cdot}L^{-1}$ chlorinated water (pH 6.5), $1.5g{\cdot}L^{-1}$ CC, heat treatment in TW at $45^{\circ}C$, and CC dissolved in TW at $45^{\circ}C$ for 2 minutes separately. Samples were then packaged in $50{\mu}m$ polyethylene bags and stored at $5^{\circ}C$. Results revealed that like $50{\mu}L{\cdot}L^{-1}$ chlorine, washing in CC at normal water temperature was effective in reducing microbial population in fresh-cut broccoli samples. Washing with CC combined with heat treatment increased an electrical conductivity of fresh-cut broccoli. Combined heat treatments with TW and CC reduced aerobic plate count on fresh-cut broccoli, only in initial period of storage. But, later on heat treatment induced injury of fresh-cut broccoli resulting more microbial population compared to non heat treatment. However, samples treated with CC alone had good quality with low off-odor at the end of storage. Results suggest that CC, an environment-friendly sanitizer could be an alternative to chlorinated water for washing of fresh-cut broccoli without affecting sensorial quality.

Cleaning and Storage Effect of Electrolyzed Water Manufactured by Various Electrolytic Diaphragm (격막 방식에 따라 제조한 전해수의 세척 및 보관 효과)

  • 김명호;정진웅;조영제
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • This study was carried out to investigate the efficacy of electrolyzed water manufactured with or without diaphragm on sterilization and preservation of cut-celery and shelled raw oyster. In cut-celery, total viable cell count and coliform group in the treatment of electrolyzed water were decreased to about 1/200∼1/1,000 level and about 1/100 level comparing non-treated ones. But moisture content, pH, hardness, vitamin C and residual chlorine content were showed a little difference among treatments up to 10 days at 10$^{\circ}C$. L and a color values were gradually increased in all treatments, and color differences($\Delta$E) were remarkable between treatment and untreatment sample. In overall acceptability, cut-celery treated with electrolyzed water showed somewhat higher score than that of other ones treated with tap water and 100 ppm NaClO solution until 5 days of storage. After 48 hours of storage, it was showed that VBN, total viable cell count and coliform count of shelled raw oyster treated with electrolyzed alkali water produced by non-diaphragm system are lower by about 3 mg%, 1∼2 log cycle and 2 log cycle respectively than that of ones treated with sea water. Total viable cell count of shelled raw oyster just after treatment was lower by about 1 log cycle than that of ones treated with sea water, and any significant increment was not found after 24∼48 hours of storage.

Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System (배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석)

  • Kim, Do-Hwan;Lee, Doo-Jin;Kim, Kyoung-Pil;Bae, Chul-Ho;Joo, Hye-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.916-927
    • /
    • 2010
  • In general water treatment process, the disinfection process by chlorine is used to prevent water borne disease and microbial regrowth in water distribution system. Because chlorines were reacted with organic matter, carcinogens such as disinfection by-products (DBPs) were produced in drinking water. Therefore, a suitable injection of chlorine is need to decrease DBPs. Rechlorination in water pipelines or reservoirs are recently increased to secure the residual chlorine in the end of water pipelines. EPANET 2.0 developed by the U.S. Environmental Protection Agency (EPA) is used to compute the optimal chlorine injection in water treatment plant and to predict the dosage of rechlorination into water distribution system. The bulk decay constant ($k_{bulk}$) was drawn by bottle test and the wall decay constant ($k_{wall}$) was derived from using systermatic analysis method for water quality modeling in target region. In order to predict water quality based on hydraulic analysis model, residual chlorine concentration was forecasted in water distribution system. The formation of DBPs such as trihalomethanes (THMs) was verified with chlorine dosage in lab-scale test. The bulk decay constant ($k_{bulk}$) was rapidly decreased with increasing temperature in the early time. In the case of 25 degrees celsius, the bulk decay constant ($k_{bulk}$) decreased over half after 25 hours later. In this study, there were able to calculate about optimal rechlorine dosage and select on profitable sites in the network map.

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

Effect of Ozone, Ultraviolet light and Chlorine on Lettuce Growth and Nutrient Solution Sterilizing in Hydroponics (오존, 자외선 및 염소처리가 수경재배 상추의 생육 및 배양액의 살균효과에 미치는 영향)

  • 이중환;정종도;서동환;최경배;전하준
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • 최근 시설재배에서는 염류 집적 및 토양전염성 병해충 등으로 인한 연작장해를 회피하기 위하여 수경재배로 전환하는 농가가 급속히 증가하고 있다. 우리나라의 수경재배면적은 '98년 23 ha에서 2000년 1,000 ha로 급속히 증가하고 있는데, 이중 약 12%는 담액수경이나 박막수경의 순수 수경재배 방식이 차지하고 있으나 대부분이 고형배지를 이용한 비순환방식이다. 배양액의 비순환방식은 토양이나 지하수의 오염이 염려되지만, 순환방식의 경우에는 배양액 성분의 조정이나 배양액의 소독 등재처리가 필요하여 농가에서는 기피하고 있는 실정이다. (중략)

  • PDF

닭고기의 저장성 증진기술(2)

  • 대한양계협회
    • KOREAN POULTRY JOURNAL
    • /
    • v.33 no.1 s.375
    • /
    • pp.120-123
    • /
    • 2001
  • 닭고기는 도계공정과 취급과정에서 미생물이 오염되고 지방산화가 촉진되어 쉽게 변질되기 때문에 타 식육에 비해 저장성이 문제되는 육류식품이다. 저장성에 가장 영향을 미치는 것은 도계 공정중에 일어나는 상호오염 문제이다. 왜냐하면 닭 표피에 오염된 미생물은 나중에 수세나 염소수(chlorine)로 처리하여도 쉽게 제거되지 않기 때문이다. 따라서 위생적인 도계생산이 저장을 위한 필수 선결요소이다. 그리고 도계후 처리과정에서 작업자의 위생적인 인식이 요구되며, 가능한 단시간내에 포장을 하여 냉장 및 냉동 유통을 실시하여야 한다. 도계 및 수세공정중에 기존 염소수외에 초음파나 오존을 사용하거나 이산화염소나 인산염, pH 조정제 등을 첨가하면 미생물 억제효과가 크다고 보고되고 있다. 포장한 닭고기에 조사를 실시하면 2배 이상 저장기간을 연장시킬 수 있어 우리나라에서도 법적 허용 가능성을 검토 할 필요가 있다. 이와 같이 닭고기에 단일방법보다 hurdle technology를 이용한 복합적인 방법을 활용해야 저장기간을 연장할 수 있다.

  • PDF

An Evaluation of Antibacterial Titanium Surface For Dental Implant (치과용 임플란트 적용을 위한 항균력을 가진 티타늄 표면의 평가)

  • Kang, Min-Kyung;Moon, Seung-Kyun;Kim, Kyoung-Nam
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.405-410
    • /
    • 2011
  • The aim of this study was to evaluate antibacterial effect of Cl coated titanium. To coat the Cl on the titanium, first, the titanium was modified by blasting treatment with hydroxyapatite and alumina powder. Anodization process was completed using electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate, 0.4 M calcium acetate n-hydrate and 1 M NaCl on the condition of 250 voltages for 3 min. Surface morphology and elements' observation were performed with scanning electron microscopy and energy dispersive spectroscopy and surface profiler was used to analyze the surface roughness. Antibacterial effect was evaluated by film adhesion method. The anodized titanium after blasting showed dimpled surface contained the Cl. Surface average roughness of these surfaces had significantly higher compared to polished titanium. Result of antibacterial test showed that anodized titanium after blasting had an enhanced antibacterial effect compared to the polished titanium. Therefore, these results suggested that titanium contained Cl by anodization after blasting had a rough surface as well as antibacterial effect.

Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination (미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해)

  • 채종찬;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • Chlorinated aromatic compounds are one of the largest groups of environmental pollutants as a result of world-wide distribution by using them as herbicides, insecticides, fungicides, solvents, hydraulic and heat transfer fluids, plasticizers, and intermediates for chemical synthesis. Because of their toxicity, persistence, and bioaccumulation, the compounds contaminated ubiquitously in the biosphere has attracted public concerns in terms of serious influences to wild lives and a human being, such as carcinogenicity, mutagenicity, and disturbance in endocrine systems. The biological recalcitrance of the compounds is caused by the number, type, and position of the chlorine substituents as well as by their aromatic structures. In general, the carbon-halogen bonds increase the recalcitrance by increasing electronegativity of the substituent, so that the dechlorination of the compounds is focused as an important mechanism for biodegradation of chlorinated aromatics, along with the cleavage of aromatic rings. The removal of the chlorine substituents has been known as a key step for degradation of chlorinated aromatic compounds under aerobic condition. This can occur as an initial step via oxygenolytic, reductive, and hydrolytic mechanisms. The studies on the biochemistry and genetics about microbial dechlorination give us the potential informations for microbial degradation of xenobiotics contaminated in natural microcosms. Such investigations might provide biotechnological approaches to solve the environmental contamination, such as designing effective bioremediation systems using genetically engineered microorganisms.

  • PDF

Effects of Aqueous Chlorine Dioxide against Escherichia coli O157:H7 and Listeria monocytogenes on Broccoli Served in Foodservice Institutions (급식소에서 제공되는 브로콜리에 있어 이산화염소 처리가 Escherichia coli O157:H7과 Listeria monocytogenes의 균수에 미치는 영향)

  • Ryu, Si-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1622-1627
    • /
    • 2007
  • This study was undertaken to evaluate the effects of chlorine dioxide on reducing E. coli O157:H7 and L. monocytogenes on broccoli served in foodservice institutions. Broccoli samples inoculated with $10^6$ CFU/mL of E. coli O157:H7 and L. monocytogenes were treated with chlorine dioxide. Treatments with 5, 10, and 20 ppm for 1, 5, and 10 min were not sufficient in controlling E. coli O157:H7 on broccoli. L. monocytogenes were effectively reduced by $2.19{\sim}2.48log\;CFU/g\;and\;3.31{\sim}3.87log\;CFU/g$ with 10 and 20 ppm chlorine dioxide for 1, 5, and 10 min treatment, respectively, compared with the control. E. coli O157:H7 and L. monocytogenes population were significantly negatively correlated with concentration and treatment time of chlorine dioxide. These results show that the use of chlorine dioxide was effective in sanitizing L. monocytogenes on broccoli and the level of concentration was more associated with populations of E. coli O157:H7 and L. monocytogenes than treatment time of chlorine dioxide on broccoli.