• Title/Summary/Keyword: 염소이온 침투

Search Result 198, Processing Time 0.032 seconds

Analysis of chloride penetration in the marine concrete pier (해양환경 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup;Park, Byoung-Sun;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.549-552
    • /
    • 2008
  • Corrosion of reinforcing steel is prohibited under normal condition by the alkalinity of the pore water in the concrete. But the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is decisive factor for the determination of service life of the marine concrete structures because chloride ions are abundant in the sea. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion movement of chlorides. Result reveals that the chloride concentration in the corner bar is higher than that of in the side bar with rectangular pier. Also the time to the specified accumulation of chloride in the corner bar is much shorter than that in the side bar. Because the corrosion initiation time of corner bar is half as much as that of side bar, service life for the rectangular pier in marine environment should be determined with respect to the coner bar.

  • PDF

Analysis of Chloride ion Penetration for In-place Concrete Structure (현장 콘크리트 구조물에 대한 염소이온 침투 해석)

  • 한상훈;박우선
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.307-314
    • /
    • 2003
  • 해양콘크리트 구조물의 내구성에 가장 큰 영향은 미치는 요인 중의 하나가 염소 이온의 침투에 의한 철근부식이다. 염소이온이 콘크리트 구조물 내부로 확산되어 철근이 부식하게 되면 철근의 부피팽창으로 콘크리트 덮개에 균열이 발생하고 철근의 단면적도 줄어들게 된다. 따라서, 구조물은 사용연한을 채우지 못 하고 붕괴되거나 사용성에 큰 문제가 발생하게 된다. (중략)

  • PDF

Development of Chloride Penetration Analysis Program Considering Environmental Conditions (환경조건을 고려한 염소이온 침투해석 프로그램 개발)

  • Kim, Ki Hyun;Jang, Seung Yup;Cha, Soo Won;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.709-718
    • /
    • 2008
  • Developed is a chloride penetration analysis program in which changes of environmental conditions such as temperature, humidity and external chloride concentration, and the diffusion, convection and binding of chlorides are considered. In order to consider the changes of environmental conditions, analyses for temperature and moisture distribution are implemented simultaneously, and variation of diffusion coefficients due to temperature, humidity and age is also considered. By comparing the calculated total chloride contents with some experimental data, it has been confirmed that the proposed analysis program can trace measured chloride distribution well. Also, through some example analyses, the mechanism of accumulation of chlorides at near surface and acceleration of corrosion of steel reinforcement in case that the moisture distribution changes according to repeated drying and wetting cycles have been verified.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

Chloride penetration in the marine concrete pier considering diffusion and convection (확산과 이송을 고려한 해양 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.413-416
    • /
    • 2008
  • Reinforcement corrosion is generally prohibited under normal condition by the alkalinity of the pore water in the concrete. However, concrete structures in marine environment are subjected to chloride attack due to the high salinity of the sea water. Thus the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is a decisive factor for the determination of service life of the marine concrete structure because chloride ions are abundant in the sea, and piers are the typical construction elements in concrete structures in marine environment. Hence, it is of great importance to evaluate the service life of the piers. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion and convection movement of chlorides. Result reveals that the service life of the reinforcement with drying-wetting cycles is much shorter than that of the reinforcement with saturated condition. This may be due to the fact that moisture movement is much faster that chloride diffusion.

  • PDF

The Analysis of Chloride Ion of Ground Water in the West Coast District of Jeollabuk-Do using Spatial Interpolation (공간보간법을 이용한 전라북도 서해안 지역의 지하수 염소이온 분석)

  • Lee, Geun-Sang;Im, Dong-Gil;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, the data that examined the chloride ion concentration of ground water wells in the west coast of Jeollabukdo applying the GIS spatial estimation method were analyzed. In particular, through the designation of a validation point among ground water wells and then the analysis of error characteristics of the chloride ion concentration by each method of IDW (Inverse Distance Weight), Spline, and Kriging Interpolation method which is proper for estimating salt water intrusion was selected. The main conclusion from this study is as follows. First, as a result of analyzing the error characteristics of various spatial estimation methods by using the data from the chloride ion concentration of 485 ground water wells, the IDW method was found to be the most appropriate for estimating chloride ion concentration by salt water intrusion. Second, analyzing the average chloride ion concentration of the targeted regions has revealed that Gunsan-si with the record of $541mg/{\ell}$ did not meet water quality standards even for industrial use. Both Gimje-si and Gochang-gun satisfied drinking water quality standards and Buan-gun with $272mg/{\ell}$ was slightly below the standards for drinking water. Third, concerning the results of analysis according to administrative districts, as the areas adjacent to the west coast such as Daemyeong-dong, Joong-dong, Jangjae-dong and Guemam-dong in Gunsan-si are found to have very high chloride ion concentration, and both Hoehyeon-myeon and Daeya-myeon bounded by the Mankeong river did not meet water quality standards even for industrial use. From these facts, it is concluded that salt water intrusion has a great effect on Gunsan-si generally.

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin (메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성)

  • Lee, Changsoo;Kim, Youngook;Nam, Changsik
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 2011
  • The objectives of this study is replaced Silicafume with Metakaolin that is used to lightweight concrete to better performance. So, this study made high-performance lightweight concrete using Metakaolin and characteristics of the fundamental properties and chloride ion diffusion. Consequently, it is compressive strength and chloride ion penetration resistance is lower than lightweight concrete using Silicafume, the performance of compressive strength contrast Silicafume is about 88 to 95%. Also, this study got a content result because the chloride ion penetration resistance showed the performance in around 80 to 90%. As a result, this study insist that replacement ratio of Metakaolin is suitable for 10 to 15%.Silicafume and Metakaolin have similar characteristics. In addition, it is similar to the performance of alternative materials is possible.

Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials (고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성)

  • Jin, Sang-Ho;Kim, Il-Sun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.401-404
    • /
    • 2008
  • Crack is a penetration path of harmful material such as chloride ion, and causes a serious deterioration in durability. So, the characteristics of chloride penetration are investigated for the cracked flexural concrete members using high-durable materials. For these, the flexural crack of beam specimen is introduced by transverse loading. And, Rapid Chloride Penetration Test (RCPT) and Long-term chloride penetration test are carried out to compare the chloride penetration depth. From test results when crack is happened, the chloride penetration resistance of the durable member was superior than that of the normal member. Blast furnace slag concrete member has a excellent chloride penetration resistance in long-term chloride penetration test.

  • PDF

Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 및 염소이온 확산 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • The purpose of this experimental research is to evaluate the resistance of reinforcement corrosion and chloride ion penetration of high volume fly ash (HVFA) concrete. For this purpose, concrete test specimens were made for various strength level and replacement ratio of fly ash, and then compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91 and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that compressive strength of HVFA concrete was decreased with increasing replacement ratio of fly ash but long-term resistance against reinforcement corrosion and chloride ion penetration of that was increased.