• Title/Summary/Keyword: 염색폐수

Search Result 234, Processing Time 0.034 seconds

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

Study on liquified waste(NaOH) separation/recovery and reuse from textile mercerization process by combined membrane filtration technology (복합여과막 기술을 이용한 머서라이징공정에서 발생되는 가성소다 폐액의 분리회수 및 재활용에 관한 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Joon-Hyung;Jo, Suk-Jin;Lee, Sun-Ho;Ryu, Choong-Ki;Park, Wan-Sik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.119-119
    • /
    • 2012
  • 섬유염색산업 중 면섬유의 염색과정에서 발생되는 머서라이징 폐액은 폐수처리장의 pH(수소이온농도)를 올리는 주원인이 되고 있어, 높은 pH에 따른 폐수처리 부과금이나 황산을 이용한 폐수 중화에 사용되는 약품비용이 과다하게 소요되고 있으며, 머서라이징공정에 사용되는 약품인 가성소다 비용이 계속 증가하고 있어, 기업의 환경처리비용 및 약품소모비용에 대한 부담이 매우 큰 실정이다. 본 기술은 머서라이징 폐액에 멤브레인 공정에 적용하여 폐가성소다로부터 가성소다를 회수할 뿐만 아니라, 회수된 가성소다를 다시 머서라이징 공정에 재이용할 수 있도록 하여 약품 절감효과 뿐만 아니라 폐수의 발생량과 오염물질의 농도의 획기적인 저감이 가능한 것이다. 본 연구에서는 서로 다른 기공크기를 갖는 막을 적용하여 투과플럭스, 부피회수율, 부유물질 및 유기물 제거율, 가성소다회수율, 파울링지수 등을 고려하여 폐수 특성에 맞는 가장 적합한 막을 선정하고, 각각의 막에 대하여 온도조건, 압력조건, 화학세정 등의 운전변수를 최적화, 고효율 폐알카리 회수 장치의 경제성 및 기술적 타당성 평가를 통한 가성소다 회수공정을 구성하였다.

  • PDF

Determination of Organic Pollutants in Dyeing Wastewater (염색폐수 중의 유기오염물질 분석)

  • Yook, Keun-Sung
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.332-342
    • /
    • 1997
  • Fifteen volatile organic pollutants were spiked in blank water at the concentration of $20{\mu}g/L$ and analyzed with Purge and Trap and GC/MS. As a result, the overall mean recovery of 100% was obtained with a mean relative standard deviation of 3.6%. The method detection limits were in the range of $1.9{\sim}3.3{\mu}g/L$. In the wastewater analysis of Banwol dyeing comlex, 15 organic compounds were identified and three of these were quantified. Among the compounds identified, only trichloroethylene and tetrachloroethylene are regulated in wastewater by the Korea Ministry of Environment. But, the concentration of these two compounds were below the government allowance level.

  • PDF

담체를 이용한 염색폐수의 생물학적처리

  • Lee, Gi-Yong;Lee, Yeong-Rak;Im, Ji-Hun;Kim, Sang-Yong;Park, Cheol-Hwan;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.469-472
    • /
    • 2000
  • When NAR1A species were applied for the dyeing wastewater treatment process, it achieved 20.5% COD removal, whereas NAR3A and NBY3A species could achieve 50.3% COD removal at the same experiment conditions. In the case of real dyeing wastewater experience, Color remaoval was poor and COD removal was increased compare to the case of synthetic wastewater.

  • PDF