태양전지 분야에서 최근 크게 주목받고 있는 염료감응형 태양전지(DSC)의 효율 및 대면적화에 대한 연구는 지속적으로 이루어지고 있다. 그러나 염료감응형 태양전지의 대면적화로 인한 셀 내부의 전자 흐름에 관한 셀 특성의 고찰은 이루어지고 있지 않다. 따라서 본 연구에서는 염료감응형 태양전지의 대면적화에 앞서 염료감응형 태양전지의 대면적화에 따른 셀 특성을 알아보았다. 본 실험에서는 대면적화의 하나의 변수로서 셀의 가로 폭을 선택하였고, 가로 폭의 변화에 따른 각 샘플 셀의 전기특성을 확인하였다. 그 결과 셀의 폭이 증가할수록 표면저항이 커져 염료에서 발생된 광전자가 표면저항으로 인해 포집이 잘 이루어지지 않게 되어 전자의 흐름이 원활하지 않게 됨을 알 수 있었다. 궁극적으로 셀의 대면적화는 표면저항의 증가로 이어져 셀 특성에 나쁜 영향을 미치게 됨을 확인 할 수 있었다.
염료 감응형 태양전지는 일반적으로 투명 전극 기판, 염료가 흡착된 $TiO_2$, 전해질, Pt가 코팅된 투명 전극 기판으로 구성된다. 이 중 투명 전극 기판은 전체 재료비 중 60% 이상을 차지하여 이를 대체하는 새로운 구조에 대한 연구가 활발히 진행 중이다. 본 논문에서는 투명 전극 기판을 사용하지 않는 염료 감응형 태양전지를 연구하였다. $TiO_2$ 위에 e-beam 증착을 이용하여 다공성의 Ti 전극을 형성하였다. Ti 전극의 다공성은 SEM 분석 및 염료 흡착을 통해 확인하였다. Ti 전극의 두께가 증가함에 따라 표면저항은 감소하였으며, 태양전지의 효율은 증가하는 경향을 보였다. 또한 Ti 전극의 표면저항이 투명 전극 기판의 표면저항과 동등 수준일 경우 효율 또한 동등 수준을 나타내었다.
염료감응형 태양전지의 성능을 향상시키기 위해서는 염료에서 여기된 전자가 TiO2 계면을 따라 TCO (Transparent Conductive Oxide)로 이동하지 않고 산화된 염료나 전해질과 재결합하는 것을 차단하는 것, 그리고 염료에 TCO의 전기적 접촉을 차단하는 것 등이 필요하다. 이를 위해 본 연구에서는 TiO2 박막층 위에 차단층 TiO2를 $450^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 각각 소결한 뒤Blocking layer로서의 온도에 따른 상(phase) 변화를 통해 염료감응형 태양전지의 효율 향상에 대해 실험하였다. 기존 염료 감응형 태양전지에 대한 보고에 의하면 $600^{\circ}C$ 이상에서의 상은rutile 상임을 확인할 수 있다. 실험결과 Blocking layer로서의 TiO2를 $750^{\circ}C$에서 $750^{\circ}C$에서 sintering 했을 때, 가장 좋은 전기적 특성을 나타내었다.
전세계적으로 에너지난과 환경오염난을 겪고 있는 가운데 최근 대체에너지에 대한 관심이 어느 때보다 높은 시기이다. 다양한 대체에너지 중에서도 태양광 에너지는 우리나라 환경에 적합해 많은 연구가 진행 중인 분야이다. 대부분의 태양광 발전 시장이 결정질 실리콘 태양전지가 차지하고 있으나 경제성의 한계로 인해 최근 염료감응형 태양전지가 이를 대체할 수 있는 전지로 주목받고 있다. 본 연구에서는 염료감응형 태양전지의 상대전극에 증착하는 백금층의 두께 변화가 가져오는 출력특성의 영향을 연구했다. 상대전극에 증착되는 백금 박막은 염료감응형 태양전지의 매커니즘에서 입사광의 반사와 전기화학적 촉매작용 역할을 하는 것으로 박막의 두께가 두꺼워지면 반사율이 증가해 염료 분자가 받는 에너지가 늘어날 것으로 예상했다. 상대전극에 백금 Sputtering하는 시간을 1분에서 최대 5분까지 차를 두어 상대전극의 백금 박막의 두께를 $50nm{\sim}250nm$로 변화를 주어 측정한 결과, 250nm의 백금 박막층을 갖는 염료감응형 태양전지보다 백금 박막층이 150nm의 두께를 가질 때 가장 좋은 효율을 출력한다는 것을 알 수 있었다. 이를 통해 상대전극의 백금 박막층에 의한 거울 효과와 촉매작용의 한계와 전자의 흐름 장애에 대한 결과를 얻을 수 있었다.
본 연구에서는 염료 감응형 태양전지의 효율 향상을 위한 유리 기판 및 전극 패턴에 따른 특성 변화와 대면적화 모듈을 위한 금속 그리드의 특성을 보여준다. 단위 셀 단위의 기본적인 재료와 기존의 제조 방법에 의해 제조된 염료 감응형 태양전지(DSC)는 높은 내부 저항으로 인하여 대면적 셀의 변환 효율은 치명적으로 저하된다. 또한 증가하는 내부 저항 감소를 위해서 외부적인 제조 공정이 추가되지 않고서는 불가능하다. 따라서 본 논문에서는 TCO(ITO) 식각, $TiO_2$ 식각, $50mm{\times}50mm$ 셀과 $100mm{\times}30mm$ 셀의 특성 비교 실험을 통해서 변환 효율 상승효과를 얻었고 광전류 포집 향상을 기대하기 위해 Pt 그리드를 이용해 current correcting line을 증착시켰다.
염료감응형 태양전지는 기존의 실리콘 태양전지에 비해 저렴한 가격과 다양한 날씨 조건에서도 태양광과의 반응성이 안정하다는 여러 가지 장점을 갖고 있다. 하지만 광전 변환 효율이 기존의 실리콘 태양전지에 비해 현저히 떨어진다는 문제점과 장기적으로 안정하지 못하다는 단점을 가지고 있다. 이러한, 염료감응형 태양전지에서 크게 광전 변환 효율을 향상시킬 수 있는 재료는 염료, $TiO_2$와 같은 반도체 산화물전극 재료, 전해질이다. 이 중 $TiO_2$의 특성 및 크기는 염료감응형 태양전지의 효율에 영향을 미친다. 염료감응형 태양전지의 광전 변환 효율을 증가시키기 위해서 $TiO_2$는 넓은 비표면적, 높은 전자의 이동성 및 태양광과의 우수한 반응성을 가져야 한다. Microwave hydrothermal 방법에 의해 제조된 hollow $TiO_2$를 염료감응형 태양전지에 적용시킬 경우 기존의 $TiO_2$의 광흡수 반응이 200~400 nm 사이에서 발생하는 반면, hollow $TiO_2$의 광흡수 반응은 기존의 UV 영역인 200~400 nm 뿐만 아니라 가시광 영역인 400~460 nm 에서도 광흡수 반응이 가능하기 때문에 염료감응형 태양전지에서 광전 변환효율을 증가 시킬 수 있을 것으로 기대된다. 또한, microwave hydrothermal법에 의해 제조된 hollow $TiO_2$는 150-200 nm의 크기를 갖으며 20-30 nm 크기의 $TiO_2$ particle들로 이루어져 있다. hollow $TiO_2$ (150-200 nm)를 기존의 $TiO_2$ (10-20 nm) 층 위에 올려 염료감응형 태양전지의 electrode에 적용할 경우 기존의 $TiO_2$ 단층을 이용한 것보다 우수한 light-scattering 효과를 갖게 되어 광전 변환 효율 증가에 긍정적인 영향을 미칠 것이다. 본 연구에서는 hollow $TiO_2$의 광학적 특성 및 결정성이 염료감응형 태양전지에 미치는 영향을 조사하였다. hollow $TiO_2$의 광학적 특성 및 결정성의 변화를 위하여 microwave hydrothermal 법의 합성 온도 및 합성시간에 변화를 주었다. hollow $TiO_2$의 광학적 특성은 UV-visible spectrometer를 이용하여 조사하였으며, hollow $TiO_2$의 형상과 결정학적 특성은 TEM과 SEM 그리고 X선 회절 분석을 이용하여 관찰되었고, hollow $TiO_2$의 비표면적 측정은 BET 측정법을 이용하였다. 또한 염료감응형 태양전지 cell을 제작하여 $100mW/cm^2$(AM 1.5G) 기준에서 광전 변환 효율을 측정하였다.
염료 감응형 태양전지는 상,하판 투명전극(TCO), 나노입자의 다공질 TiO2, 염료 고분자 층으로 구성된 광전극과 투명전극 및 백금(Pt) 박막으로 구성된 상대전극 그리고 두 전극 사이를 산화 환원용 전해질 용액으로 채우고 있는 구조이다. 이 구조에서 투명전극(TCO)은 재료비의 많은 부분을 차지하므로 제작비용 절감을 위한 TCO-less에 관한 연구가 활발히 진행 중이다. 본 연구에서는 TCO-less 염료 감응형 태양전지 제작을 위해 이중층 Ti 전극 구조를 제안하였다. 제작과정은 광조사 부분을 확보한 유리기판에 e-beam 증착법을 이용해 Ti 전극을 증착시킨 후 TiO2를 Ti전극과 일부 중첩하여 인쇄하고 그 위에 두 번째 Ti전극을 제작한다. 이중층 Ti전극 구조는 SEM, EIS 등의 분석장비를 사용하였고 기존 FTO 구조에 비해 단락전류밀도, 에너지 변환효율은 감소하였으나 직렬 내부저항이 약 27% 감소하여 fill factor가 28% 향상된 결과를 얻을 수 있었다.
염료 감응형 태양전지는 기존 Si 기반 PN접합 무기 태양전지에 비해서 경제적이다. 하지만 그 에너지 변환 효율은 아직까지 세계 최고 수준이 10%밖에 도달하지 못하였다. 그래서 다양한 방식의 효율개선 연구가 활발히 진행되고 있는 실정이다. 본 연구에서는 진공원자층증착(ALD)를 이용하여 Core-shell 구조의 $TiO_2$층 위에 아주 얇고 균일한 $Al_2O_3$ (알루미나) 산화막을 입혔다. 이를 통해서 염료감응형 태양전지의 에너지 변환 효율을 향상시켰다. 본 연구에서는 진공원자층증착(ALD)기술을 이용한 $Al_2O_3$ (알루미나) 산화막의 증착조건에 따른 염료감응태양전지의 효율 개선 매커니즘에 대해서 고찰하였다.
태양전지는 대표적인 결정질 실리콘 태양전지를 비롯해 다양한 종류가 있지만 모두 입사광의 광량이나 광도에 출력이 의존한다는 점은 공통적이다. 이는 입사광의 에너지를 받아 염료 분자의 여기를 통해 전자를 생산하는 염료감응형 태양전지의 매커니즘에도 적용되는 것이다. 즉, 입사광의 광도나 광량의 값이 클수록 염료감응형 태양전지는 더 높은 출력전력을 생산한다는 의미이다. 본 연구에서는 투명성 때문에 입사광의 투과도가 높은 염료감응형 태양전지의 특성에 착안해 상대전극에 금속박막을 sputtering함으로써 입사광의 반사율을 증가시켜 입사된 광의 에너지를 더 효과적으로 활용할 수 있는 방법을 시도했다. 금속박막의 재료로 니켈, 백금, 은을 대상으로 실험한 결과, 금속박막을 sputtering 하지 않은 경우에 비해 전체적으로 염료감응형 태양전지의 효율이나 전력면에서 개선된 결과를 얻었고 그 중 백금 반사막을 입힌 셀로부터 최대 24.4%의 투과도 감소를 비롯, 11.5%의 출력전력의 증가와 0.4%의 효율 상승을 이끌어냈다.
태양전지는 무한한 차세대 청정에너지로 주목을 받으며 그 개발의 필요성이 높아지고 있다. 이중 염료 감응형 태양전지(Dye-Sensitized Solar Cells, DSSC)는 낮은 제조 단가와 높은 효율로 기존의 Si 태양전지를 대체할 새로운 방법으로 연구되고 있다. 염료감응태양전지에 사용되는 $TiO_2$는 광촉매 성질 및 전자 전도성이 좋으며, 무독성에 가격이 저렴하여 다양한 분야에서 현재 많이 연구되고 있는 재료이다. 많이 사용되어지는 TiO2의 표면적은 염료의 흡착에 관여하므로 표면적의 제어는 매우 중요한 요소이다. $TiO_2$를 기판에 증착하는 방법으로는 Electrophoretic deposition, Chemical bath deposition, RF Margnetron sputtering, Electron-beam evaporation 등이 있으며 본 실험에서는 RF Magnetron sputtering을 사용하여 기판에 증착시키는 방법으로 구조를 제어하고자 한다. 이렇게 제조된 $TiO_2$ 박막을 SEM(Scanning Electron Microscopy)과 Solar simulator를 이용하여 표면형상과 Photocurrent-voltage curve를 분석하였다. 이것을 토대로 제조된 $TiO_2$박막의 구조가 염료감응태양전지에 미치는 영향을 연구해보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.