• Title/Summary/Keyword: 열-수리 모델

Search Result 95, Processing Time 0.028 seconds

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.

Flexible Unit Floor Plan of Off-Site Construction Housing Considering Long-Lasting Housing Certification System (장수명주택 인증을 고려한 OSC공법 주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun;Roh, Jeong-Yeol;Kwon, Soo-Hye;Kim, Seung-Mo
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.103-117
    • /
    • 2021
  • With the current rapid changes in population and technology, the long-lastig housing certification system is a means of prolonging the physical and functional lifespan of a building. The certification requires differentiation between the structure and infill elements to allow for variability and ease of repairs. This works well with prefabricated houses so this study investigated the possibility of applying the long-lastig housing certification requirements to apartment construction using off-site construction (OSC) methods focused on the installation of bathrooms (plumbing and toilet) that differ from the traditional wet method. This study examined three different sized floor plans at 22 m2, 46 m2, and a combined one resulting in 69 m2. The larger 69 m2 plan utilized a removeable non-load bearing wall to increase flexibility in the layout of the floorplan. The apartments are constructed of steel reinforced concrete composite columns on a 9 m × 10.5 m grid with integrated slabs. The exterior and interior infill walls are all non-load bearing with some containing plumbing. This separation of the structure and infill walls can help meet some of the criteria in the long-lastig housing certification, particularly with the ease of repairs. Technologies that facilitate the replacement of infill elements that contain plumbing and other building services can benefit the nation by reducing carbon emissions and therefore tax incentives should be introduced to increase the adoption of the proposed construction methods.

A Study on the Mathematical Programming Approach to the Subway Routing Problem (지하철 차량운용 문제에 대한 수리적 해법에 관한 연구)

  • Kim, Kyung-Min;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1731-1737
    • /
    • 2007
  • This paper considers subway routing problem. Given a schedule of train to be routed by a railway stock, the routing problem determines a sequence of trains while satisfying turnaround time and maintenance restrictions. Generally, the solution of routing problem is generated from set partition formulation solved by column generation method, a typical integer programming approach for train-set. However, we find the characteristics of metropolitan subway which has a simple rail network, a few end stations and 13 departure-arrival patterns. We reflect a turn-around constraint due to spatial limitations has no existence in conventional railroad. Our objective is to minimize the number of daily train-sets. In this paper, we develop two basic techniques that solve the subway routing problem in a reasonable time. In first stage, we formulate the routing problem as a Min-cost-flow problem. Then, in the second stage, we attempt to normalize the distance covered to each routes and reduce the travel distance using our heuristic approach. Applied to the current daily timetable, we could find the subway routings, which is an approximately 14% improvement on the number of train-sets reducing 15% of maximum traveling distance and 8% of the standard deviation.

  • PDF

Analysis of Benchmark Test Model for Evaluation of Damage Characteristics of Rock Mass near Radioactive Waste Repository (방사성폐기물 처분장 주변 암반의 손상 특성 고찰을 위한 벤치마크 시험 모델 해석)

  • Lee, Hee-Suk
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.32-42
    • /
    • 2007
  • Severe damage can occur around deposition holes due to complex interaction of thermo-hydro-mechanical (THM) loading during the long term operation of high level radioactive waste repository. Many candidate sites for repository are located in crystalline rock mass, therefore mechanism of damage follows the form of brittle fracture and failure. This paper briefly introduces major outcomes from 15 years international collaborative project, DECOVALEX, and presents major study results for current ongoing benchmark test study from DECOVALEX-THMC, to evaluate the effect of THM loading to rock mass in excavation damaged zone (EDZ) near deposition holes. Through benchmark test model by simplifying THM loading to boundary loading obtained numerical results are compared, and discrete fracture interaction after up to 1 million years operation is discussed.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study (GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • The Geo-Reservoir Experimental Analogue Technology (GREAT) cell was designed to recreate the thermal-hydro-mechanical conditions of deep subsurface in the laboratory. This apparatus can generate a polyaxial stress field using lateral loading elements, which rotate around the longitudinal axis of a sample and is capable of performing a fluid flow test for samples containing fractures. In the present study, numerical simulations were carried out for triaxial compression tests using the GREAT cell and the mechanical behavior of samples under different conditions of lateral loading was investigated. We simulated an actual case, in which triaxial compression tests were conducted for a polymer sample without fractures, and compared the results between the numerical analysis and experiment. The surface strain (circumferential strain) of the sample was analyzed for equal and non-equal horizontal confining pressures. The results of the comparison showed a good consistency. Additionally, for synthetic cases with a fracture, we investigated the effect of the friction and type of fracture surface on the deformation behavior.

Concrete plug cutting using abrasive waterjet in the disposal research tunnel (연마재 워터젯을 활용한 처분터널 내 콘크리트 플러그 절삭)

  • Cha, Yohan;Kim, Geon Young;Hong, Eun-Soo;Jun, Hyung-Woo;Lee, Hang-Lo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.153-170
    • /
    • 2022
  • Waterjet has been comprehensively used in urban areas owing to a suitable technique for cutting concrete and rock, and low noise and vibration. Recently, the abrasive waterjet technique has been adopted and applied by the Korea Atomic Energy Research Institute to demolish concrete plugging without disturbing and damaging In-situ Demonstration of Engineered Barrier System in the disposal research tunnel. In this study, the use of abrasive waterjet in the tunnel was evaluated for practical applicability and the existing cutting model was compared with the experimental results. As a variable for waterjet cutting, multi-cutting, water flow rate, abrasive flow rate, and standoff distance were selected for the diversity of analysis. As regarding the practical application, the waterjet facilitated path selection for cutting the concrete plugging and prevented additional disturbances in the periphery. The pump's noise at idling was 64.9 dB which is satisfied with the noise regulatory standard, but it exceeded the standard at ejection to air and target concrete because the experiment was performed in the tunnel space. The experimental result showed that the error between the predicted and measured cutting volume was 12~13% for the first cut and 16% for second cut. The standoff distance had a significant influence on the cutting depth and width, and the error tended to decrease with decrement of standoff distance.

Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis (시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측)

  • Woo, Joung Woon;Kim, Yeon Joong;Yoon, Jong Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.128-134
    • /
    • 2022
  • Nakdong river estuary is being operated with the goal of expanding the period of seawater inflow from this year to 2022 every month and creating a brackish water area within 15 km of the upstream of the river bank. In this study, the deep learning algorithm Long Short-Term Memory (LSTM) was applied to predict the salinity of the Nakdong Bridge (about 5 km upstream of the river bank) for the purpose of rapid decision making for the target brackish water zone and prevention of salt water damage. Input data were constructed to reflect the temporal and spatial characteristics of the Nakdong River estuary, such as the amount of discharge from Changnyeong and Hamanbo, and an optimal model was constructed in consideration of the hydraulic characteristics of the Nakdong River Estuary by changing the degree according to the sequence length. For prediction accuracy, statistical analysis was performed using the coefficient of determination (R-squred) and RMSE (root mean square error). When the sequence length was 12, the R-squred 0.997 and RMSE 0.122 were the highest, and the prior prediction time showed a high degree of R-squred 0.93 or more until the 12-hour interval.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.