• Title/Summary/Keyword: 열 탈수

Search Result 86, Processing Time 0.025 seconds

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

가교 키토산 복합막을 이용한 알코올 수용액의 농축

  • 남상용;이병렬;우동진;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.36-37
    • /
    • 1995
  • 투과증발법은 기존의 증류법에 의해 분리되기 어려운 혼합물(공비혼합물이나 끓는점이 비슷한 혼합물)이외에 열에 민감한 생성물의 분리, 과익쥬스의 농축, 불순물 찌꺼기의 제거, 정량 검출을 위한 유기 오염물질의 농축 등에 이용되었으며 특히 물과 에탄올의 공비혼합물의 분리와 물로부터 희박 유기물질을 회수하는데 행해져 왔다. 본 연구에서 사용된 키토산은 친수성기들을 가지고 있기 때문에 물과 알코올의 분리에서 물을 선택적으로 투과시켜 효과적인 투과증발막으로 사용될 수 있으며 투과속도를 높이기 위해서 활성층이 매우 얇은 복합막을 제조하였다. 또한 키토산 복합막을 다양한 가교제 (glutaraldehyde, glyoxal, terephthalaldehyde, 황산등)로 가교한 막들을 열처리를 하거나 키토산과 PVA를 블렌드하여 제조한 키토산/PVA 블렌드 복합막을 이용하여 에탄올/물, IPA/물 혼합용액에서의 탈수 실험을 실시하여 이에 따른 투과성능의 영향을 살펴보았다.

  • PDF

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid (수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향)

  • Song, Dae-Sung;Seo, Dong-Seok;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Commercial hydroxyapatite (HA) powders were calcined at the temperature range of $1000{\sim}1350^{\circ}C$ in air, for 2h, and the calcined powders were immersed in simulated body fluid (SBF) of pH 7.4 at $37^{\circ}C$ for 3 or 7 days. Thermal decomposition and their related dissolution behaviors of hydroxyapatite were investigated by XRD, FT-IR, and TEM. At the temperature of $1200^{\circ}C$, HA gradually releases its $OH^-$ ions and transforms to OHAP((oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)). HA thermally decomposes to ${\alpha}-TCP$ (${\alpha}-tricalcium$ phosphate) and TTCP (tetracalcium phosphate) phase at $1350^{\circ}C$. It was found that the surface dissolution of the hydroxyapatite powders was accelerated by non-stoichiometric composition and decomposed to ${\alpha}-TCP$ and TTCP.

Study of Heat and Acid Treatment for Hectorite in Turkey Boron Deposit (터키 붕소광상산 헥토라이트의 열 및 산 처리에 따른 특성 연구)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo;Koh, Sang Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.103-111
    • /
    • 2016
  • Li-bearing hectorite, one member of trioctahedral smectite, occurred large in quantity and confirmed in Turkey western sedimentary boron deposit. Li-bearing hectorite attracted a particular attention because it is one of potential lithium resources. There have been no consensus for the change of hectorite due to heat and acid treatment although it is very important to use in industrial application. In this study, we examined changes of hectorite after heat and acid treatment as well as acid treatement followed by heating. We used clay ores collected in Bigadic deposit, which contained the highest $Li_2O$ content in Turkey boron deposits. Hectorite showed a strong endothermic reaction at $84^{\circ}C$ due to dehydration of absorbed water and interlayer water and a weak endothermic reaction above $600^{\circ}C$ owing to dehydration of crystallization water. The first endothermic reaction accompanied a large weight loss about 6%. Hectorite decomposed into enstatite, cristobalite and amorphous Fe material at $762^{\circ}C$ with exothermic reaction. When hectorite reacted with 3 kinds of 0.1 M acid during 1 hours, it had a good dissolution efficiency with $H_2SO_4{\geq}HCl$ > $HNO_3$ in order.

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening (활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향)

  • Kim, Min Sik;Kim, Jin Woo;Kang, Chang Du;So, Byung Dal;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.201-211
    • /
    • 2019
  • The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.

Anaerobic Treatment of Leachate Solubilized from Thermal Hydrolysis of Sludge Cake (하수슬러지 케이크 열수분해 탈리액의 혐기성 분해 특성)

  • Kang, Ho;Oh, Baik-Yong;Shin, Kyung-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.583-589
    • /
    • 2015
  • This study was performed to evaluate the feasibility of anaerobic pretreatment for the leachate solubilized from thermal hydrolysis of sewage sludge cake. Overall process for the treatment of sludge cake consists of thermal hydrolysis, crystallization of magnesium, ammonium, and phosphate (MAP) for the leachate and anaerobic digestion of supernatant from MAP crystallization. The experimental evidence showed that the optimum ratio of Mg : P for the struvite crystallization of leachate solubilized from thermal hydrolysis of sludge cake was 1.5 to 1.0 as weight basis at the pH of 9.5. With this operational condition, the removal efficiencies of ammonia nitrogen and phosphorous achieved 50% and 97%, respectively. The mesophilic batch test showed that the ultimate biodegradability of the supernatant from MAP crystallization reached 63% at S/I ratio of 0.5. The readily biodegradable fraction of 90% ($S_1$) of the MAP supernatant BVS (Biodegradable Volatile Solids, $S_0$) degraded with $k_1$ of $0.207day^{-1}$ for the initial 17 days where as the rest slowly biodegradable fraction ($S_2$) of 10% of BVS degraded with $k_2$ of $0.02day^{-1}$ for the rest of the operational period. Semi-Continuously Fed and Mixed Reactor (SCFMR) was chosen as one of the best candidates to treat the MAP supernatant because of its total solids content over 6%. Maximum average biogas production rates reached 0.45 v/v-d and TVS removal efficiency of 37~41% was achieved at an hydraulic retention time (HRT) of 20 days and its corresponding organic loading rate (OLR) of 1.43 g VS/L-d.