• Title/Summary/Keyword: 열 촉매 분해

Search Result 202, Processing Time 0.02 seconds

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

The Partial Oxidation of Methanol of MoO3 Catalyst (MoO3 촉매상에서의 메탄올 부분산화반응)

  • Kim, Jeong-Hi;Park, Youn-Seok;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-137
    • /
    • 1991
  • The dissociation and partial oxidation of $CH_3OH$ on polycrystalline $MoO_3$ powder catalyst were studied using thermal desorption spectrometry(TDS) under high vacuum condition. $CH_3OH$ was dissociatively adsorbed on $MoO_3$ in the forms of surface methoxy($-OCH_3$) and atomic hydrogen(-H). $CH_3OH$ desorbed at 425 K via the re-association of methoxy and adsorbed hydrogen atom, and HCHO desorbed at 545 K through the bond breakage of C-H in methoxy. Water TDS spectra showed two desorption peaks, that is, ${\alpha}$-peak at 428 K and ${\beta}$-peak at 586 K. It was suggested that ${\alpha}$-peak was due to the hydroxyl formed on $MoO_3$ surface during the dissociation of $CH_3OH$, and that ${\beta}$-peak was from the association of lattice oxygen and surface hydrogen atom formed by the bond breakage of C-H in methoxy. Pre-adsorbed oxygen on the surface of $MoO_3$ catalyst increased the amount of adsorption of $CH_3OH$ by promoting the dissociation of $CH_3OH$ on the surface, whereas pre-adsorbed water decreased the amount of adsorption of $CH_3OH$ by blocking of adsorption sites for $CH_3OH$.

  • PDF

Production of $H_2$ Gas in Pyrolysis of Paper Biomass using Ni-based Catalysts (종이 바이오매스의 열분해에서 니켈 촉매에 의한 수소제조특성)

  • Choi, Yong-Keun;Chattopadhyay, Jeeta;Kim, Chul-Ho;Kim, Lae-Hyun;Son, Jae-Ek;Park, Dea-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.514-519
    • /
    • 2008
  • In the present study, biomass pyrolysis was done using five different kinds of catalysts with change in the support species and their compositions. Ni was loaded on alumina, ceria and alumina-ceria supports using co-precipitation method. In all the catalysts, 30wt% of nickel was loaded on the support materials. The paper used in daily writing purposes was taken into account as biomass sample. In the experiment, 19 of biomass was mixed with o.1g of each catalyst separately. Thermogravimetric analysis (TGA) was performed with all the catalysts diminished the initial degradation temperature of paper biomass sample considerably. During the pyrolysis process, the temperature was raised from room temperature to $800^{\circ}C$ with the heating rate of $10^{\circ}C$/min in the furnace. The cumulative $H_2$ volume had reached the best value of l4.02ml with the Ni/$Al_2O_3-CeO_2$ 30wt%/(50wt%-50wt%) catalysts. In presence of all the catalysts, the highest amount of $H_2$ was produced at $800^{\circ}C$, 10min. of residence time.

Influence of Various Catalysts on the Biomass Pyrolysis Reaction (바이오매스 열분해 반응에서 다양한 촉매의 영향)

  • BAK, YOUNG-CHEOL;CHOI, JOO-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.536-544
    • /
    • 2017
  • The effects of catalysts addition on the pyrolysis reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo, Pine and Hinoki. The catalysts tested were K, Zn, Cu metal compounds. The pyrolysis reactions were tested in the nonisothermal condition from the room temperature to $550^{\circ}C$ at a heating rate $50^{\circ}C/min$ on the flowing of $N_2$ purge gases. Cellulose contents of Bamboo was higher than that of Pine and Hinoki. As the results, the pyrolysis reaction of volatile matter was finished near the temperature $450^{\circ}C$. The initial decomposition temperatures of the volatile matters ($T_i$) were $165^{\circ}C$ for Bamboo, $190^{\circ}C$ for Pine, and $193^{\circ}C$ for Hinoki. $T_i$ decreased with increasing the catalyst amounts in the sample biomasses. The temperature of maximum reaction rate ($T_{max}$) were $338^{\circ}C$ for Bamboo, $378^{\circ}C$ for Pine, and $377^{\circ}C$ for Hinoki. The effects of catalysts addition on the $T_{max}$ were to decreased it. The reducing effects about $T_{max}$ was the most effective for K metal compounds catalyst. The char amounts remained after pyrolysis at $550^{\circ}C$ were 26.2% for Bamboo, 20.7% for Pine, and 20.9% for Hinoki. The char amounts increased with the catalyst amounts.

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst (46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조 )

  • SEUNGCHEOL SHIN;HANEUL JUNG;DANBEE HAN;YOUNGSOON BAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.601-607
    • /
    • 2023
  • Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.

Catalytic Oxidation of Toluene over Pd-Activated Alumina Catalysts at Low Temperature (활성알루미나에 담지한 팔라듐 촉매상에서 톨루엔의 저온 연소반응)

  • Lee, Ju-Yeol;Song, Hyung-Jin;Lee, Sang-Bong;Kim, Mi-Hyung;Jo, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.339-347
    • /
    • 2012
  • This study focuses on developing catalysts for the removal of toluene produced from paint booth. Toluene is one of the major VOC in painting, coating process. Pd catalysts have been used in hydrogenation oxidation and low temperature combustion reaction for toluene removal. Pd catalysts, even though it is very precious and expensive. Therefore, the prepared catalysts from minimizing the amount of Pd ratio (0.1~1.0wt%) were measured. As a result, 1.0wt% Pd(R) catalyst under all conditions showed the highest activity. These results may suggest that the catalytic activity is related to Pd dispersion according sintering atmosphere and Pd ratio in the manufacturing process through the analysis of SEM, XRD.

Chemisorption and Oxidation of Methanol over V2O5 Catalyst - I. Chemisorptive Behaviors of CO and CH3OH - (V2O5 촉매상에서의 메탄올 흡탈착 및 산화반응 - I. CO와 CH3OH의 화학흡착 특성 -)

  • Kim, Eul-San;Choi, Ki-Hyouk;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 1994
  • The adsorptive behaviors of carbon monoxide and methanol over $V_2O_5$catalyst were studied by means of thermal desorptlon spectroscopy (TDS) under ultrahigh vacuum conditions. Carbon monoxide adsorbed on oxygen-deficient V sites as well as on V=O groups of the $V_2O_5$ surface. CO adsorbed on the V sites desorbed at 380 K while CO adsorbed on the V=O groups formed carbonate species with surface oxygen of $V_2O_5$ and desorbed as $CO_2$ resulting in the reduction of the surface of she $V_2O_5$catalyst. The amount of CO adsorbed in the form of carbonate species increased by both the pre- and post-adsorbed oxygen. The adsorptive behavior of methanol over the catalyst was studied by thermal desorption experiments of $CH_3OH$, HCHO, CO, and $H_2$ upon methanol adsorption at 298 K. The results showed that methanol was adsorbed dissociatively on the $V_2O_5$catalyst as methoxy and hydroxyl groups at 298K.

  • PDF

Catalytic Pyrolysis of Various Carbon Number Feed Oil Using a Spouted Bed Reactor (Spouted Bed Reactor를 이용한 다양한 탄소수 원료유 촉매 열분해)

  • Yoo, Kyeong Seun;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.627-630
    • /
    • 2011
  • We focus on a catalytic process based on direct injection method that can produce high-quality oils of gasoline and kerosene with various carbon-number feed oils. The reaction characteristics of a commercial catalyst were analyzed using a spouted bed reactor. Decane and pentadecane were used to compare the characteristics of the fixed bed and the spouted bed reactor. The yield of gasoline plus kerosene was highest at the reaction temperature of $550^{\circ}C$. For the spouted bed reactor, the at-a-pulse injection was more effective for catalytic cracking of feed oils than multiple consecutive injections. The reaction activity became higher as the carbon number of feed oil is larger.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yun, Ki-Jun;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF