• Title/Summary/Keyword: 열 전달촉진

Search Result 46, Processing Time 0.033 seconds

Studies on the Shape Change of Trilobal Fibers in Melt Spinning

  • Jung, Il;Kim, Sang-Yong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.260-263
    • /
    • 1998
  • 섬유단면이 원형이 아닌 L, T, H, W, Y, I 등과 같은 모양을 가지는 이형단면 섬유(shaped fiber)는 그 모양으로 인해 원형단면 섬유와는 다른 광택, 마찰계수, 촉감, 굽힘강도 등을 가지고 여러 가지 용도로 쓰이고 있다. 이형단면 섬유의 용융방사시 같은 면적을 가진 원형단면 섬유와 비교해 증가된 표면적은 열과 물질 전달을 증가시키고 고화를 촉진한다. (중략)

  • PDF

Experimental Study on Accelerating Phase Change Heat Transfer (상변화 물질의 상변이 촉진에 관한 실험적 연구)

  • 박설현;오율권;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Solid-liquid phase change (i.e. melting or solidification) occurs in a number of situations of practical interest. Some common examples include the melting of edible oil, metallurgical process such as casting and welding, and materials science applications such as crystal growth. Therefore, due to the practical importance of the subject, there have been a large number of experimental and numerical studies of problems involving phase change during the past few decades. Also, this study presented the effective way to enhance phase change heat transfer.

이달의 과학자 - 서울대 기계항공공학부 최만수 교수

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.33 no.10 s.377
    • /
    • pp.78-79
    • /
    • 2000
  • 나노입자의 제조 및 성장제어와 열 및 물질전달과 에어로솔 공학분야의 연구에 주력하고 있는 최만수 교수(44세). 최근에는 나노입자의 융합속도를 제어하는 새로운 나노입자 성장제어 기술을 개발해 학계의 관심을 모으고 있다. 최교수는 앞으로 융합촉진을 이용하는 나노입자 제어기술을 복합나노입자를 포함한 여러 다양한 나노입자의 제조와 나노물질의 제조에 응용해 나갈 것이며 이론적 모델리의 개발도 병행해 나갈 계획이다.

  • PDF

Hysteresis on Boiling Heat Transfer at Low Temperature on Enhanced Tubes in a Flooded Evaporator (만액식 증발기의 열전달 촉진관에서 저온 비등열전달의 이력현상 특성)

  • 윤현필;박종익;정진희;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.254-260
    • /
    • 2003
  • The boiling characteristics for R134a are studied to clarify the hysteresis at low temperature on enhanced tubes of a flooded evaporator. Initial boiling conditions, refrigerant temperature, and inlet temperature of the chilled water are considered as the key parameters of the experiments. Unlike previous studies of the boiling heat transfer with uniform heat flux and uniform wall temperature, the wall temperature was varied along the tube. In, this study, it was found that the hysteresis of the temperature overshoot (705) at the onset of nucleate boiling initially at the inlet section of the tube. It is also concluded that the abnormal operation can be avoided during the low temperature boiling if the refrigeration system is started with LMTD larger than $3.4^{\circ}C$ at initial stage and larger than $1.0^{\circ}C$ at normal stage.

Heat/Mass Transfer Augmentation in a Square Duct . Roughened with Angled Discrete Ribs Having Narrow Gaps (정사각 덕트 내에서 열/물질전달 촉진을 위한 경사진 단락 요철의 좁은 틈새 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Choi, Chung;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.150-158
    • /
    • 2002
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the ;augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90° and 60° are selected with e/D$\_$h/=0.08. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. Consequently, the angled discrete ribs with the small gaps provide a more uniform heat/mass transfer distribution sustaining high average heat/mass transfer.

Heat Transfer by Heat Generation in Electrochemical Reaction of PEMFC (고분자 전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Han, Sang-Seok;Lee, Pil-Hyong;Lee, Jae-Young;Park, Chang-Soo;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.273-283
    • /
    • 2008
  • GDL(Gas Diffusion Layer) is one of the main components of PEM fuel cell. It transports reactants from the channel to the catalyst and removes reaction products from the catalyst to the channels in the flow filed plate. It is known that higher permeability of GDL can make it possible to enhance the gas transport through GDL, leading to better performance. And MEA's temperature is determined by gas and heat transport. In this paper, three dimensional numerical simulation of PEM fuel cell of parallel channel and serpentine channel by the permeability of GDL is presented to analysis heat and mass transfer characteristics using a FLUENT modified to include the electrochemical behavior. Results show that in the case of parallel channel, performance variation with change of permeability of GDL was not so much. This is thought because mass transfer is carried out by diffusion mechanism in parallel channel. Also, in the case of serpentine channel, higher GDL permeability resulted in better performance of PEM fuel cell because of convection flow though GDL. And mass transfer process is changed from convection to diffusion when the permeability becomes low.

Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs (쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

The Effect of Ultrasonic Vibration on Heat Transfer Augmentation of Forced Convective Flow in Circular Pipes (초음파 진동이 관내 강제대류 유동의 열전달 증진에 미치는 영향)

  • Jeong Ji Hwan
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.275-280
    • /
    • 2004
  • Augmentation of heat transfer by ultrasonic vibration in pipes are investigated. Measurements of convective heat transfer coefficients on circular pipe walls are made with and without ultrasonic vibration applied to water. These data are compared with each other to quantify the effects of ultrasonic vibration on heat transfer enhancement. Numerical analysis has been also performed in order to extend the ranges of examined temperature and flow rate. FLUENT Ver.6.1 is used to simulate velocity and temperature fields and evaluate heat transfer coefficient with and without ultrasonic vibration. The results show that the ultra- sonic vibration enhances the Nusselt number of forced convection flow and the increase rate strongly depends on flow rate.

Characteristics of Heat and Mass Transfer for a Falling Film Type Absorber with Insert Spring Tubes (스프링삽입형 유하액막식 흡수기의 열 및 물질전달 특성)

  • 윤정인;오후규;백목효부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1501-1509
    • /
    • 1995
  • It is known that the heat and mass transfer characteristics in the absorber are most sensitive of the temperature boost of all the heat exchangers and the development of a more efficient absorber should be highly important. This paper describes absorption experiments made with different inside tube diameters, tube length and tube shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a Lithium Bromide-water solution flowing down an absorber of vertical inner tubes. As a result, insert spring tube compares bare tube and heat transfer improved by order of insert spring tube P2(pitch 20 mm) and P1(pitch 10 mm).