• Title/Summary/Keyword: 열 맞대기 융착부

Search Result 2, Processing Time 0.018 seconds

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

Investigation of Bending Fatigue Behaviors of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 굽힘 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.40-44
    • /
    • 2015
  • The fatigue behavior of thermal butt fusion in safety class III high-density polyethylene (HDPE) buried piping for nuclear power plants was investigated using load-controlled bending fatigue on four-point bend test specimens. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low- and medium-cycle fatigue regions while having a negligible effect in the high-cycle fatigue regions.