• Title/Summary/Keyword: 열 ${\cdot}$ 물질이동

Search Result 5, Processing Time 0.02 seconds

High Mobility Thin-Film Transistors using amorphous IGZO-SnO2 Stacked Channel Layers

  • Lee, Gi-Yong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.258-258
    • /
    • 2016
  • 최근 디스플레이 산업의 발전에 따라 고성능 디스플레이가 요구되며, 디스플레이의 백플레인 (backplane) TFT (thin film transistor) 구동속도를 증가시키기 위한 연구가 활발히 진행되고 있다. 트랜지스터의 구동속도를 증가시키기 위해 높은 이동도는 중요한 요소 중 하나이다. 그러나, 기존 백플레인 TFT에 주로 사용된 amorphous silicon (a-Si)은 대면적화가 용이하며 가격이 저렴하지만, 이동도가 낮다는 (< $1cm2/V{\cdot}s$) 단점이 있다. 따라서 전기적 특성이 우수한 산화물 반도체가 기존의 a-Si의 대체 물질로써 각광받고 있다. 산화물 반도체는 비정질 상태임에도 불구하고 a-Si에 비해 이동도 (> $10cm2/V{\cdot}s$)가 높고, 가시광 영역에서 투명하며 저온에서 공정이 가능하다는 장점이 있다. 하지만, 차세대 디스플레이 백플레인에서는 더 높은 이동도 (> $30cm2/V{\cdot}s$)를 가지는 TFT가 요구된다. 따라서, 본 연구에서는 차세대 디스플레이에서 요구되는 높은 이동도를 갖는 TFT를 제작하기 위하여, amorphous In-Ga-Zn-O (a-IGZO) 채널하부에 화학적으로 안정하고 전도성이 뛰어난 SnO2 채널을 얇게 형성하여 TFT를 제작하였다. 표준 RCA 세정을 통하여 p-type Si 기판을 세정한 후, 열산화 공정을 거쳐서 두께 100 nm의 SiO2 게이트 절연막을 형성하였다. 본 연구에서 제안된 적층된 채널을 형성하기 위하여 5 nm 두계의 SnO2 층을 RF 스퍼터를 이용하여 증착하였으며, 순차적으로 a-IGZO 층을 65 nm의 두께로 증착하였다. 그 후, 소스/드레인 영역은 e-beam evaporator를 이용하여 Ti와 Al을 각각 5 nm와 120 nm의 두께로 증착하였다. 후속 열처리는 퍼니스로 N2 분위기에서 $600^{\circ}C$의 온도로 30 분 동안 실시하였다. 제작된 소자에 대하여 TFT의 전달 및 출력 특성을 비교한 결과, SnO2 층을 형성한 TFT에서 더 뛰어난 전달 및 출력 특성을 나타내었으며 이동도는 $8.7cm2/V{\cdot}s$에서 $70cm2/V{\cdot}s$로 크게 향상되는 것을 확인하였다. 결과적으로, 채널층 하부에 SnO2 층을 형성하는 방법은 추후 높은 이동도를 요구하는 디스플레이 백플레인 TFT 제작에 적용이 가능할 것으로 기대된다.

  • PDF

An Experimental Study on Vacuum Drying of Water-Saturated Porous Media (함수다공질층의 진공건조에 관한 실험적 연구 (Ⅰ))

  • Park, Hyeong-Jin;Kim, Gyeong-Geun;Kim, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.68-75
    • /
    • 1996
  • The vacuum drying characteristics of water-saturated porous media were studied experimentally. The water-saturated porous media, water-saturated sand layer, was heated by the isothermal bottom wall of the rectangular vessel. The vacuum drying rate and temperature distribution of the sand layer were measured and calculated under a variety of conditions of heated wall temperature, vacuum rate, and thickness of the test material. It was found that the drying rate due to the heat and mass teansfer is greatly influenced by the heated wall temperature, vacuum rate, and thickness of the test material.

  • PDF

Transport Properties of Charge Carrier in Amorphous Selenium Converter drived by Vacuum Thermal Evaporation Method (진공증착법을 이용한 비정질 셀레늄 변환체의 전하캐리어 이동특성 분석)

  • Park, Ji-Koon;Choi, Il-Hong;Lee, Mi-Hyun;Lee, Kwang-Phoo;Yu, Haeng-Soo;Jung, Bong-Zae;Kang, Sang-Sik;Kim, Mi-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.37-40
    • /
    • 2010
  • In this paper, transport properties of charge carrier which is produced by x-ray exposure were investigated.. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. We measured transit time and drift mobility of charge carriers of a-Se photoconductor using time-of-flight method. We made a testing glass with a-Se of $100{\mu}m$ thickness on corning glass using thermal evaporation method. As a result of this experiment, electron and hole transit time was each $229.17{\mu}s$ and $8.73{\mu}s$ at $10V/{\mu}m$ electric field and drift mobility was each $0.00174cm^2/V{\cdot}s$, $0.04584cm^2/V{\cdot}s$. But the results shows us different measurement value of electron and charge drift mobility and it was investigated about charge transport properties and trap mechanism.

Electrochemical Characteristics of $LaNi_5$ Electrode Fabricated by Ni and Cu Electroless Plating Techniques (Ni 및 Cu무전해 도금법에 의해 제조한 $LaNi_5$ 전극의 전기화학적 특성)

  • Yi Su Youl;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • The effect of electroless Ni and Cu plating on $LaNi_5$, $AB_5$ type hydrogen storage alloy was investigated by the various electrochemical techniques such as constant current charge-discharge test, cyclic voltammeoy, and a.c. impedance spectroscopy. Scanning electron microscopy and X-ray diffraction test were conducted for phenomenological logical analyses. Cyclic Voltammetry results show that activation characteristics, cycle life and reaction ,rate were improved through electroless Ni and Cu plating. Compared with bare $LaNi_5$ the charge transfer resistance of electrode was greatly reduced as charge-discharge cycle increases. Therefore, electroless Ni and Cu plating on $LaNi_5$ alloy tends to accelerate the early activation, increasing the cyclic lift of electrode.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.