• Title/Summary/Keyword: 열흡수율

Search Result 4, Processing Time 0.021 seconds

A Study on the Heat Transfer in boiler through the performance test in thermal power plant (화력발전소 보일러내의 열전달에 관한 연구)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2064-2069
    • /
    • 2004
  • The main reason to analyze heat transfer in boiler inside through the performance test in fossil power plant is to increase plant high efficiency and energy saving movement in the government. Tins study intends to have trend and analyze the boiler heat transfer through the performance test, so it may give us the heat distribution in boiler inside in super-critical and sub-critica1 pressure type power plant

  • PDF

A Study on the boiler efficiency with selecting the uppermost burners in the 870MW opposite wall fired boiler (870MW 대향류 보일러에서 최상부층 버너 선택운전에 따른 보일러 효율변화 고찰)

  • Woo, Gwang-Yoon;Kim, Soo-Seok;Park, In-Chan;Ham, Young-Jun;Lee, Eung-Yoon
    • Plant Journal
    • /
    • v.13 no.2
    • /
    • pp.46-51
    • /
    • 2017
  • In this study, the boiler efficiency and the change of boiler combustion state with the burner operation of the uppermost layer of 870MW opposite fired coal boiler were measured. Test results showed that the boiler efficiency was high in the order of the uppermost layer simultaneous operation of the front and rear burners, the front burner, and the rear burner operation. When the front and rear burners were operated simultaneously, the heat absorption rate of water walls in the boiler furnace was uniform at four side, and the temperature deviation of the left and right steam on the convection front surface decreased. As the heat absorption rate of the boiler improved, the loss of boiler exhaust gas decreased and the coal supply amount decreased by 8 tons/hour compared to the operation of the rear burner. This will contribute not only to the reduction of fuel cost but also to the reduction of greenhouse gas emissions.

  • PDF

An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs (PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF

An Experimental Study on the Cooling Characteristics of the Liquid Cooling Radiator of the Natural Convection Type by Using the PCM (PCM을 적용한 자연대류형 수냉식 방열기의 냉각특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.324-329
    • /
    • 2008
  • The liquid cooling effect of a natural convection type radiator by using the PCM has been investigated experimentally. The radiator size is $423{\times}295{\times}83$ mm and PCM container size is $398{\times}270{\times}26$ mm. The objective is elapsed time higher than maximum time to reach for maximum operating temperature of a general liquid cooling radiator. This study, in order to study on the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, ambient and melting point of three type PCM. For the above experimental parameter, the melting time was performed about 180/250/560 min at input power 150 W and ambient $30^{\circ}C$ from using the three type PCM(PCM_S1/S2/S3) respectively. Furthermore, the effects of the thermal dissipation was decreased higher input power than lower input power at heating block and melting time of PCM. However, the effects of mass flow rate did not nearly affect of the thermal performance especially.

  • PDF