• Title/Summary/Keyword: 열획득 모델

Search Result 66, Processing Time 0.026 seconds

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

Flame Detection of Steam Boilers using Neural Networks and Image Information (영상신호와 신경회로망을 이용한 보일러 화염 검출)

  • Bae, Hyeon;Park, Dong-Jae;Ahan, Hang-Bae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.163-168
    • /
    • 2003
  • Several equipments for flame detection are employed in the power generations. But these flame detectors have some problems for the correct performance. So in this paper, we apply different techniques for the flame detection. Image processing techniques are broadly applied in industrial fields. In this paper, the image information is recorded by a camcoder and then these images are preprocessed for the input values of neural network model. We can test and evaluate the approach that uses image information for the flame detection of burners. If this technique is implemented in physical plant, the economical and effective operation could be achieved.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

User-centric Context Model for Context-aware Application (맥락 인식 애플리케이션을 위한 사용자 중심의 맥락 모델)

  • Hong, Dong-Pyo;Woo, Woon-Tack
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.810-813
    • /
    • 2007
  • 본 논문에서는 맥락 인식 (context-aware) 애플리케이션 개발에 있어서 사용자의 맥락 정보를 보다 효과적으로 처리할 수 있는 사용자 중심의 맥락 모델을 제안한다. 유비쿼터스 컴퓨팅 개념의 확산과 함께 맥락 인식 애플리케이션들에 관한 많은 연구가 진행되고 있다. 하지만, 맥락에 대한 정의는 여전히 모호하며, 애플리케이션들 마다 서로 다른 형태의 맥락을 활용하고 있기 때문에, 맥락에 대한 보다 구체적인 정의와 다양한 애플리케이션에 활용 가능한 형태의 맥락 모델이 필요하다. 제안된 사용자 중심의 맥락 모델에서는 사용자가 애플리케이션과 상호작용할 때 사용자의 직접적인 명령을 제외한 사용자와 관련된 정보를 맥락으로 정의한다. 또한, 제안된 사용자 중심의 맥락은 5W1H 형태로 구조화한 맥락요소 (ContextElement), 맥락 요소들을 편리하게 처리할 수 있는 연산자들을 포함하는 맥락 (Context), 그리고 단편적인 맥락 정보뿐만 아니라 기존의 맥락 정보까지도 활용할 수 있는 맥락메모리 (ContextMemory)로 구성된다. 특히, 다양한 센서들로부터 획득된 정보를 맥락 모델의 인터페이스를 통해서 맥락 인식 애플리케이션에서 활용할 수 있기 때문에, 서로 다른 맥락 인식 애플리케이션들을 개발함에 있어서도 동일한 맥락 모델을 사용할 수 있는 장점이 있다. 제안된 맥락 모델의 유용함을 보이기 위해서, 센서로부터 획득된 맥락 정보를 처리하는데 소요되는 시간을 측정하는 실험을 하였다. 따라서 제안된 사용자 중심의 맥락 모델은 사용자와 맥락 인식 애플리케이션간 자연스러운 상호작용을 지원할 것으로 기대된다.) kcal/mol의 생성활성화 에너지 감을 나타내었고, TGA로부터의 분해활성화 에너지는 각각 31.94, 30.84, 24.16 kcal/mol의 값을 나타내었다.로 감소되었다(35.2% vs. 77.4%; p<0.01). 실험 2에서 다양한 정자 농도에 의한 정자 침투율과 정상 수정률을 바탕으로 판단했을 때 $4.6{\times}10^6/ml$의 정자 농도가 다른 정자 농도에 비해 난구 세포부착 난자의 체외 수정에 적합한 것으로 나타났다. 체외 수정과정에서 난구 세포 부착된 상태로 수정된 난자는 나화 난자에 비해 유의적으로(p<0.05) 높은 분할률(48.8% vs. 58.9%), 배반포 형성률(11.0% vs. 22.8%)과 배반포 세포수$(22{\pm}2\;vs.\;29{\pm}2)$를 나타내었다. 본 연구의 결과로부터 돼지의 체외 수정과정에서 난구 세포의 존재는 정자 침투를 저해하지만 분할률, 배반포 형성률 및 배반포의 세포수를 증가시키는 것으로 사료된다.수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과

The Design of Application Model using Manufacturing Data in Protection Film Process for Smart Manufacturing Innovation (스마트 제조혁신을 위한 보호필름 공정 제조데이터의 활용모델 설계)

  • Cha, ByungRae;Park, Sun;Lee, Seong-ho;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2019
  • The global manufacturing industry has reached the limit to growth due to a long-term recession, the rise of labor cost and raw material. As a solution to these difficulties, we promote the 4th Industry Revolution based on ICT and sensor technology. Following this trend, this paper proposes the design of a model using manufacturing data in the protection film process for smart manufacturing innovation. In the protective film process, the manufacturing data of temperature, pressure, humidity, and motion and thermal image are acquired by various sensors for the raw material blending, stirring, extrusion, and inspection processes. While the acquired manufacturing data is stored in mass storage, A.I. platform provides time-series image analysis and its visualization.

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling (Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석)

  • Cho, Deok-Rae;Shin, Jae-Ryul;Choi, Jeong-Yeol;Yang, Vigor
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • The detonation wave characteristics of JP-7 and oxygen mixture is investigated by one-step induction parameter model (IPM) obtained from a detailed chemistry mechanism. A general procedure of obtaining reliable one-step kinetics IPM for hydrocarbon mixture from the fully detailed chemistry is described in this study. The IPM is obtained by the reconstruction of the induction time database obtained from a detailed kinetics library. The IPM was confirmed by the comparison of the induction time calculations with that from detailed kinetics. The IPM is later implemented to a fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results show the detailed characteristics of the detonation wave propagation in JP-7 and oxygen mixture at affordable computing time, which is not be possible by the direct application of the detailed chemical kinetics mechanism of hydrocarbon fuel combustion.

Stream Environment Monitoring using UAV Images (RGB, Thermal Infrared) (UAV 영상(RGB, 적외 열 영상)을 활용한 하천환경 모니터링)

  • Kang, Joon-Oh;Kim, Dal-Joo;Han, Woong-Ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.6 no.2
    • /
    • pp.17-27
    • /
    • 2017
  • Recently, civil complaints have increased due to water pollution and bad smell in rivers. Therefore, attention is focused on improving the river environment. The purpose of this study is to acquire RGB and thermal infrared images using UAV for sewage outlet and to monitor the status of stream pollution and the applicability UAV based images for river embankment maintenance plan was examined. The accuracy of the 3D model was examination by SfM(Structure from Motion) based images analysis on river embankment maintenance area. Especially, The wastewater discharged from the factory near the river was detected as an thermal infrared images and the flow of wastewater was monitored. As a result of the study, we could monitor the cause and flows of wastewater pollution by detecting temperature change caused by wastewater inflow using UAV images. In addition, UAV based a high precision 3D model (DTM, Digital Topographic Map, Orthophoto Mosaic) was produced to obtain precise DSM(Digital Surface Model) and vegetation cover information for river embankment maintenance.

  • PDF

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Irregular Sound Detection using the K-means Algorithm (K-means 알고리듬을 이용한 비정상 사운드 검출)

  • Chong Ui-pil;Lee Jae-yeal;Cho Sang-jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2005
  • This paper describes the algorithm for deciding the status of the operating machines in the power plants. It is very important to decide whether the status of the operating machines is good or not in the industry to protect the accidents of machines and improve the operation efficiency of the plants. There are two steps to analyze the status of the running machines. First, we extract the features from the input original data. Second, we classify those features into normal/abnormal condition of the machines using the wavelet transform and the input RMS vector through the K-means algorithm. In this paper we developed the algorithm to detect the fault operation using the K-means method from the sound of the operating machines.

  • PDF