• Title/Summary/Keyword: 열화학

Search Result 748, Processing Time 0.02 seconds

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

A Study on Pill Temperature Control method and Hydrogen Production with 2-step Thermochemical Cycle Using Dish Type Solar Thermal System (접시형 태양열 시스템을 이용한 2단계 열화학 싸이클의 수소 생산과 PID 온도 제어 기법 연구)

  • Kim, Chul-Sook;Kim, Dong-Yeon;Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.42-50
    • /
    • 2013
  • Solar thermal reactor was studied for hydrogen production with a two step thermochemical cycle including T-R(Thermal Reduction) step and W-D(Water Decomposition) step. NiFe2O4 and Fe3O4 supported by monoclinic ZrO2 were used as a catalyst device and Ni powder was used for decreasing the T-R step reaction temperature. Maintaining a temperature level of about $1100^{\circ}C$ and $1400^{\circ}C$, for 2-step thermochemical reaction, is important for obtaining maximum performance of hydrogen production. The controller was designed for adjusting high temperature solar thermal energy heating the foam-device coated with nickel- ferrite powder. A Pill temperature control system was designed based on 2-step thermochemical reaction experiment data(measured concentrated solar radiation and the temperature of foam device during experiment). The cycle repeated 5 times, ferrite conversion rate are 4.49~29.97% and hydrogen production rate is 0.19~1.54mmol/g-ferrite. A temperature controller was designed for increasing the number of reaction cycles related with the amount of produced hydrogen.

Prediction of Temperature and Degree of Cure of Carbon Fiber Composites Considering Thermal Chemical Reaction (화학 반응열을 고려한 탄소 섬유 복합재 온도와 경화도 예측)

  • Jae-Woo Yu;Wie-Dae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2023
  • In the manufacturing process of thermosetting carbon fiber composite materials using an autoclave, the internal temperature changes according to the set temperature cycle. This temperature change causes the resin in the composite material to cure. Heat is generated through the chemical reaction of the resin, which can result in a difference between the temperature inside the autoclave and the temperature of the composite material. Previous research assumed that the temperatures of the composite material and the autoclave were the same and analyzed to predict the residual stress and thermal deformation after manufacturing. However, these stresses and deformations depend on the temperature and degree of cure of the composite material. Therefore, this study verifies a thermal-chemical model analysis technique that takes into account the heat generated by the chemical reaction of the resin to accurately calculate the temperature and degree of cure. Additionally, case studies were conducted for different thicknesses to investigate whether this model exhibits similar trends across varying thicknesses.

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

Degradation Evaluation of 1Cr-0.5Mo Steel using Barkhausen Noise (바크하우젠 노이즈에 의한 1Cr-0.5Mo 강의 열화도 평가)

  • Kim, Min-Gi;Park, Jong-Seo;Lee, Yun-Hee;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.136-140
    • /
    • 2011
  • Mechanical properties of degraded materials must be measured for evaluating the integrity of the facilities operating at high temperature. In fact it is complicated to obtain the different degraded specimens from an operating facility. Specimens of 1Cr-0.5Mo steel prepared by the isothermal heat treatment at $700^{\circ}C$ were tested, which has been widely used as tubes for heat exchangers and as plates for pressure vessels. The magnetic properties and Rockwell hardness (HRB) were measured at room temperature. The peak interval of Barkhausen noise envelope (PIBNE), coercivity, and hardness decreased with the increase of degradation. The magnetic and mechanical softening of matrix is likely to govern the properties of the specimen more than the hardening of grain boundary by carbide precipitations. The degradation of test material may be determined by the linear correlation of PIBNE and HRB. Degradation of 1Cr-0.5Mo steel could well be nondestructively evaluated by PIBNE measured with surface type probe.

Study on the Micro Crack Detection in Joints by Using Ultrasound Infrared Thermography (초음파 적외선 열화상을 이용한 접합부의 미세균열 검출 연구)

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Seung-Seok;Huh, Yong-Hak;Lee, Bo-Young;Kim, Jae-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • This study detected SCC defects of dissimilar metal welded(STS304 and SA106 Gr. b) pipes using the ultrasonic infrared thermography method and the lock-in image treatment method among infrared thermography method. The infrared excitement equipment has 250 Watt of output and 20 kHz of frequency. By using the ultrasound infrared thermography method, the internal defects of dissimilar metal weld joints of pipes used at nuclear power plants could get detected. By an actual PT test, it was observed that the cracks inside the pipe existed not as a single crack but rather as a multiple cracks within a certain area and generated a hot spot image of a broad area on the thermography image. In addition, UT technology could not easily defects detected by the width of $10\;{\mu}m$ fine hair cracks. but, ultrasound infrared thermography technique was defect detected.

Study on Degradation Characteristics and Chemical Cleaning Methods of Plasticized PVC for Conservation of Plastic Artifact (연질 PVC 작품 보존을 위한 가소제 종류별 열화 특성 및 화학적 세척법 연구)

  • Lee, Na Ra;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • Plasticizers, which are added to plastics, can cause exudation, which means that the plasticizer comes out from surface of the plastics. This causes the surface of plastic artworks to become sticky, and this allows dust and pollutants to become attached to the surface. Therefore, in this study, the degradation characteristics and chemical cleaning methods of each type of plasticizer are evaluated using PVC specimens. To evaluate the degradation characteristics and chemical cleaning methods, microscopic observation, chromaticity and weight measurement, and FT-IR spectroscopy were performed. The results showed that PVCs containing different plasticizers have different degradation patterns. Especially, the PVC containing TOTM showed discoloration and exudation. In the evaluation of the chemical cleaning methods, ethyl alcohol and KOH solution showed good effects, but their stability was not good. Surfactant was found to have a good cleaning effect and stability as a cleaner for exudated plasticizers.

Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave (표면파의 음향비선형 특성을 이용한 표면 피로열화 평가)

  • Lee, Jae-Ik;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.415-420
    • /
    • 2009
  • This paper reports the results of a case study for the evaluation of surface damage by using acoustic nonlinearity of surface wave. In this study, the experimental system was constructed to measure the acoustic nonlinear parameter of surface wave in an Aluminum 6061 T6 specimen of which surface was damaged by the three point bending fatigue test, and magnitudes of nonlinear parameter measured before and after the fatigue test were compared. Especially, since the surface fatigue damage by the three point bending is concentrated at the central position of loading, the change in the nonlinear parameter around this position was monitored. Experimental results showed that the measured nonlinear parameter at the outside of this position after the fatigue test was almost same as the initial value before the fatigue test, since the fatigue damage at this position was little. However, clear increase in the nonlinear parameter was noticed after the fatigue test at the central position of specimen where the surface fatigue damage is expected to be concentrated.

An Exploratory Study on the Optimized Test Conditions of the Lock-in Thermography Technique (위상잠금 열화상 기법의 최적 실험 조건 탐색 연구)

  • Cho, Yong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • This work is devoted to the technique application of lock-in infrared Thermography in the shipbuilding and ocean engineering industry. For this purpose, an exploratory study to find the optimized test conditions is carried out by the design of experiments. It has been confirmed to be useful method that the phase contrast images were quantified by a reference image and weighted by defect hole size. Illuminated optical intensity of lower or medium strength give a good result for getting a phase contrast image. In order to get a good phase contrast image, lock-in frequency factors should be high in proportion to the illuminated optical intensity. The integration time of infrared camera should have been inversely proportional to the optical intensity. The other hand, the difference of specimen materials gave a slightly biased results not being discriminative reasoning.