• Title/Summary/Keyword: 열화학적 메탄화

Search Result 6, Processing Time 0.021 seconds

Design of Cooling System for Thermochemical CO2 Methanation Isothermal Reactor (열화학적 CO2 메탄화 등온반응기의 수순환 냉각시스템 설계)

  • LEE, HYUNGYU;KIM, SU HYUN;YOO, YOUNGDON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • CFD analysis including optimization process was conducted to design shell and tube CO2 methanation reactor cooling system. The high-pressure saturated water flowed into the cooling system and was evaporated by heat flux from reacting tubes. The optimization process decided the gap between tubes and reactor diameter to satisfy objective functions related to temperature. The results showed that the gap and diameter reduced about 30% and 3.6% respectively. Averaged surface temperature satisfied the target value and the min-max deviation was minimized.

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

Thermo-Chemical Conversion Characteristics of Wood wastes in a Fixed micro-reactor (고정층 마이크로 반응기에서의 폐목재 열화학적 전환 특성)

  • Lee In-Gu;Lee Jae-Goo;Kim Jae-Ho;Lee See-Hoon
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.66-73
    • /
    • 2006
  • The effects of operation conditions, such as bed temperature, temperature rising rate, particle size, moisture content and so on, on thermo-chemical conversion of waste wood have been determined in a micro fixed bed gasifier. The samples were waste wood-chips such as pine, oak, acacia and ginkgo. The thinning timbers used as reactants in the experiments had $35wt\%$ moisture content, $0.5wt\%$ ash content and 4,550 kcal/kg heating value on a dry basis. A typical product distribution was a $40wt\%$ liquid, $20wt\%$ solid, and $40wt\%$ dry syngas. The syngas concentration was affected by operation conditions and average syngas concentration was $H_2:40vol\%,\;CO:30vol\%,\;CH_4:10vol\%$.

Simultaneous Treatment of Tar and Particles Using Oil Scrubber and Bag Filter in Biomass Gasification (오일 스크러버 및 집진장치를 통한 바이오매스 가스화 공정 발생 타르 및 입자 제거 연구)

  • Kim, Joon Yub;Jo, Young Min;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.712-718
    • /
    • 2019
  • A combustible producer gas composed of H2, CO and CH4 could be obtained by the thermal-chemical conversion of biomass. However, a large amount of particulate matters including tar generated causes the mal-function of turbines and engines or the fouling of pipelines. In this study, a wet scrubber using the soybean oil and bag filter were installed, and the removal efficiency was investigated. Hydrate limestone and wood char base activated carbon were pre-coated on the filter medium to prevent clogging of open pores. The removal efficiencies by the bag filter were 86 and 80% for the hydrated limestone and activated carbon coating, respectively. Overall, the collection when using a series of oil scrubbers and bag filters were 88%, while 83% for the filter coating material.

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.