• Title/Summary/Keyword: 열화조건

Search Result 598, Processing Time 0.03 seconds

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.

The Study on Bunsen Reaction Process for Iodine-Sulfur Thermochemical Hydrogen Production (요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구)

  • Kang, Young-Han;Ryu, Jae-Chun;Park, Chu-Sik;Hwang, Gab-Jin;Lee, Sang-Ho;Bae, Ki-Kwang;Kim, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.410-416
    • /
    • 2006
  • For highly efficient operation of a Bunsen process section in an iodine-sulfur thermochemical hydrogen production cycle using nuclear heat, the process characteristics of $H_2SO_4-HI-H_2-O-I_2$ mixture system for separating into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) and the distribution of $H_2O$ to each phase were investigated.The experiments for process variables were carried out in the temperature range, from 298 to 353 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of 1/2/14~20/0.5~8.0. As the results, for the $SO_2-I_2-H_2O$ Bunsen reaction system, the ranges between the starting point and the saturation point for two liquid phases separation were determined by calculation. The best result for the minimization of impurities (HI and $I_2$ in $H_2SO_4$ phase and $H_2SO_4$ in $HI_x$ phase) in each phase was obtained in an optimum condition with the highest temperature of 353 K and the highest $I_2$ molar composition. In this condition, the $HI/H_2SO_4$ molar ratio in the $H_2SO_4$-rich phase and the $H_2SO_4/HI_x$ molar ratio in the $HI_x$-rich phase were 0.024 and 0.028, respectively. For the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$. The affinity between $HI_x$ and $H_2O$ was decreased with increasing temperature but increased with increasing $I_2$ molar composition.

Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete (콘크리트의 동결융해 내구성에 공기량, 제설제, 노출조건이 미치는 영향에 관한 연구)

  • Lee, Byung-Duk
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this study, the relative effects of low-chloride deicier(LCD) and two other deicing agents on the scaling of concrete were conducted in a series of tests at laboratory accordance with the ASTM C 672. The solutions concentration of deicers tested included 1, 4, 10%. Tap water was used as control. The amount of scaling was evaluated gravimetrically. As test result of deicer solution types, when applied to 4% solutions, surface scaling of concrete after 56 freeze-thaw cycles was produced significantly as about 9 times on LCD solution, as about 18 times on $CaCl_2$ solution, and as about 33 times on NaCl solution comparing with tap water. As test result of deicer solution concentrations, relatively low concentrations (of the 4% by weight) of deicer were produced more surface scaling than higher concentrations (of the 10% by weight) or lower concentrations (of the 1% by weight) of deicer. It show that the damaging concentration is of the order of 3~4% for previous research result. It appears that the mechanism of surface scaling is primarily physical rather than chemical. Also, the effect of chloride deicier types, freeze-thaw cycling, and air contents on the performance of concrete was experimentally investigated. The results show that the concrete specimens subjected to freeze-thaw cycling scaled more severely in exposure to deicing salt than those in non-exposure to deicing salt, weight losses of the specimens tested in exposure to deicing salt were twice as much as those tested in non-exposure to deicing salt. Relative dynamic modulus of elasticity of concrete specimens decreased more quickly in exposure to deicing salt than in non-exposure to deicing salt. Also, relative dynamic modulus of elasticity of concrete specimens in exposure to sodium chloride deicing salt was decreased more quickly comparing with exposure to LCD salt. It is also shown that the chloride contents according to concrete specimen depths was more largely in exposure to LCD salt. When concrete specimen is exposed to chloride deicing salts and freeze-thaw cycling, performance degradation in the entrained air concrete(AE concrete) retarded more considerably comparing with non-entrained air concrete(Non-AE concrete).

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Reaction Characteristics of Oxidation Catalysts for HCCI Engine (HCCI 엔진용 산화촉매의 반응특성)

  • Park, Sung-Yong;Kim, Hwa-Nam;Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • The Homogeneous Charge Compression Ignition (HCCI) engine concept allows for both NOx and particulate matter to be reduced simultaneously, and it is a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. The development of oxidation catalyst (OC) requires high conversion efficiency for CO and HC at low temperature. Conventional oxidation catalyst technologies may not be able to convert these emissions because of the saturation of active catalytic sites. The OC used in this study was 600 cpsi cordierite. Three kinds of OC with different amounts of Pt and Pd were used. The influence of the space velocity (SV), $H_2O$ and $O_2$ concentration was also studied. All types of OCs were found to have over 90% CO conversion efficiencies at $170^{\circ}C$. When in the presence of water vapor, CO conversion was increased, but $C_3H_8$ conversion was decreased. The performance of the OC was not influenced by initial the HC concentration. The 2Pt/Pd catalyst was better in terms of thermal aging than the Pt-only catalyst. The $LOT_{50}$ of both fresh and aged OC was increased with increasing SV and with the presence of $H_2O$.

Topology Design Optimization and Experimental Validation of Heat Conduction Problems (열전도 문제에 관한 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • In this paper, we verify the optimal topology design for heat conduction problems in steady stated which is obtained numerically using the adjoint design sensitivity analysis(DSA) method. In adjoint variable method(AVM), the already factorized system matrix is utilized to obtain the adjoint solution so that its computation cost is trivial for the sensitivity. For the topology optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of the structure and the allowable volume, respectively. For the experimental validation of the optimal topology design, we compare the results with those that have identical volume but designed intuitively using a thermal imaging camera. To manufacture the optimal design, we apply a simple numerical method to convert it into point cloud data and perform CAD modeling using commercial reverse engineering software. Based on the CAD model, we manufacture the optimal topology design by CNC.