• Title/Summary/Keyword: 열피로 시험

Search Result 81, Processing Time 0.022 seconds

Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses (열응력과 잔류응력하의 다층박막의 피로수명 해석)

  • Park Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

Analysis and Propagation Behavior of Dissimilar Friction Welded Materials for Fatigue Crack in around Interface (이종마찰압접 계면근방에서의 피로균열의 전파거동 및 해석)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.140-145
    • /
    • 1998
  • In this study, analysis for fatigue crack propagation behavior of interface and aroud interface under rotary bending stress. Though K values are nearly the same in around interface by BEM 2-D, fatigue crack propagated H.A.Z. Around Interface crack propagation speed is m=0.678 in H.A.Z by Paris' law. In this case(friction welded materials: STS304, SM15C), fatigue crack growth is considered SM15C metal microstructure and elastic flow from this result. Result is more metal microstructute dependence than stress dependence by analysis (BEM 3-D, BEM 2-D) and fatigue crack propagation

  • PDF

Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue (열 피로에 미치는 알루미늄 양극산화 제조방법의 융합연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.169-173
    • /
    • 2016
  • Anodic oxidation of aluminum has a sulfuric acid method and a oxalic acid method. Sulfuric acid concentration of the sulfuric acid method is 15~20 wt%. In the case of soft anodizing used in the $20{\sim}30^{\circ}C$ range, and voltage is the most used within a DC voltage 13~15V. In the case of hard anodizing used in the $0{\sim}-5^{\circ}C$ range. An aluminum oxide layer is made using sulfuric acid and oxalic acid. In this study, thermal fatigue of aluminum oxide layer which is made using sulfuric acid and oxalic acid is compared. Crack generating temperature of a sulfuric acid method and a oxalic acid method is $500^{\circ}C$ and $600^{\circ}C$. Thermal fatigue of aluminum oxide layer which is made using oxalic acid is better than thermal fatigue of aluminum oxide layer which is made using sulfuric acid. The characteristic of thermal fatigue can be explained by using thermal expansion coefficient of Al and Al2O3 and manufacturing temperature on Al anodizing. It was made possible through the convergent study to propose the manufacturing method of the anodic oxidation product used at a high temperature.

High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop (소듐 시험루프 내 소듐대 공기 열교환기의 고온 설계)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk;Lee, Yong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.665-671
    • /
    • 2013
  • In a Korean Generation IV prototype sodium-cooled fast reactor (SFR), various types of high-temperature heat exchangers such as IHX (intermediate heat exchanger), DHX (decay heat exchanger), AHX (air heat exchanger), FHX (finned-tube sodium-to-air heat exchanger), and SG (steam generator) are to be designed and installed. In this study, the high-temperature design and integrity evaluation of the sodium-to-air heat exchanger AHX in the STELLA-1 (sodium integral effect test loop for safety simulation and assessment) test loop already installed at KAERI (Korea Atomic Energy Research Institute) and FHX in the SEFLA (sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger) test loop to be installed at KAERI have been performed. Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two heat exchangers according to the high-temperature design codes, and the integrity of the high-temperature design of the two heat exchangers was confirmed.

Metal/ceramic Interface Mechanical Property Analysis (금속/세라믹 계면 물성 분석)

  • Kim, Song-Hee;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.9-15
    • /
    • 2004
  • The flexural strength from 3-point bend test and fatigue properties were measured to evaluate mechanical properties of metal/ceramic interface of the multilayer ceramic package produced through tape casting. From the results, the specimens with three electrode layers showed the highest strength. The temperature distribution with time during thermal cycle and thermal stresses with the change of electrode's shape have been estimated by mathematical modelling. Specimen affected by thermal shock, produced microcracks by the difference of thermal expansion coefficient. The results of tensile test and fatigue test showed the rupture at pin. The fact that the pin brazed specimens were always fractured at the pin proved the good bonding condition between pin and electrode.

  • PDF

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Analysis of Mechanical Property Changes of Polymer Eyeglass Frames by Thermal Impact (고분자 안경테의 온도에 의한 기계적 물성 변화 분석)

  • Seo, Hogeun;Yoon, Taeyang;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2014
  • Purpose: To analyze thermal effect on mechanical properties of domestic commercial polymer-based eyewear frames. Methods: In this study, materials of cellulose acetate, polyamide, epoxy, and polyetherimide were exposed to high or low temperature and were mounted on universal test machine (TO-100-IC) for tensile strength test. Elastic behavior, Young's modulus, maximum displacement, and fatigue were tested with various temperature ($-25^{\circ}C$, $25^{\circ}C$, $60^{\circ}C$). Results: As a result, at room temperature, displacements of materials were changed with increasing impact load. At low temperature ($-25^{\circ}C$), maximum displacements of all specimens were decreased but young's modulus were increased. However, at high temperature, maximum displacements of all specimens were increased but young's modulus were decreased. Conclusions: Degree of displacements due to fatigue behavior was increased following direction of PEI, epoxy, polyamide, acetate. We concluded that commercial polymers used in eyewear frames physical properties were changed differently to exposed temperature.

A Study on the Fatigue Behavior of Resistance Spot Welded Part of 5182 Aluminum Aloy Sheet (5182 Al합금판의 전기저항 점용접부 피로거동에 관한 연구)

  • 신현일;박용석;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 1998
  • On this study, the variations of hardness and microstructure were observed at he spot-welded part of 5182 alminum alloy sheets with thickness of 1.2 mm. The hardness of spot-welded part of aluminum alloy indicated the lowest value at nugget center. Also, the position where fatigue crack exists was investigated by surveying microstructure of the spot-welded sections. Mean load-deformation diagrams were obtained from static tensile test. Fracture was occurred completely within 5 mm after transforming elastic into plastic area. Fatigue test was stopped when the specimens of fatigue test had the final displacement of 0.2mm and measured fatigue bending angle and crack length. This study utilized them, investigated the relations between fatigue bending angle and fatigue crack length and made a estimation of the fatigue fracture life of resistance spot welded part of 5182 aluminum alloy sheet. The relative equation o fatigue crack length and fatigue failure life can be represented by {TEX}$L_{C}${/TEX}=α{TEX}$N_{f}^ {β}${/TEX}.

  • PDF

Development of Brake Disk Materials with Ni-Cr-Mo (Ni-Cr-Mo계 제동디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.188-194
    • /
    • 2008
  • Brake disks for rolling stock are exposed to thermal fatigue during braking, and thermal cracks occur on surface of disks. Thermal cracks can cause serious accidents, deterioration of braking performance and increase of maintenance cost due to frequent exchange of friction materials. In this study, candidate materials with high-heat resistance were selected by searching the literature. By using cast specimens made of the candidate materials, chemical composition, crystal structure and graphite type were analyzed. In addition, friction coefficient and wear were measured and compared with values for the disk material in service. As a result, it was shown that the NiCrMo has highest tensile strength and lowest friction coefficient and the disk material in service has the most stable friction characteristics.

Development of Large Diameter Hardfacing FCW for Life Extension of Hot Forging Die (열간단조 금형 수명연장을 위한 경화육성용접용 태경 FCW의 개발)

  • Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byung-Ho;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.13-13
    • /
    • 2009
  • 현재 열간단조 금형을 제작함에 있어 육성용접을 실시하는 방법이 금형강 STD61, STD11 등으로 제작하는 방법에 비해 보수나 비용적인 측면에서 이점을 가지고 있기 때문에 점차적으로 증가하고 있는 추세이다. 열간단조 공정에서 금형은 $1000^{\circ}C$이상의 고온재료와 반복접촉하게 된다. 이때 이형제의 사용은 급속냉각 및 급속가열의 열피로를 가속시킨다. 또한, 금형은 반복충격에 의한 기계적 피로를 받게 된다. 이러한 금형의 사용환경을 고려한 FCW는 종래 고가의 $2.8{\sim}3.2{\Phi}$인 외국산 FCW를 사용하였으나 이를 대체한 $3.2{\Phi}$ 태경 FCW가 국내에서 개발되었다. 하지만 개발된 FCW를 사용하여 제작된 금형의 수명이 부족한 현상이 발생하였다. 이에 금형의 수명을 연장시킬 수 있는 내균열성 및 내열충격성을 확보한 태경 FCW의 개발과 개발된 FCW의 성능평가가 요구되었다. 특히 열간단조 금형에 있어서 중요한 내열충격성의 경우 가열과 냉각의 반복 Cycle에 의한 Thermal shock의 평가가 대부분이며 높은 Cycle로 인해 많은 시간이 걸리며, 또한 가열과 냉각을 오갈 수 있는 고가의 시험장치가 요구된다. 그러므로 개발된 FCW 육성용접부의 내균열성 및 내열충격성을 평가할 수 있는 방법에 대한 연구와 특히 내열충격성을 시간이 적게 걸리면서도 경제적으로 평가할 수 있는 방법에 대한 연구가 필요하다. 본 연구의 목적은 열간단조 금형 육성용접부의 내균열성 및 열충격특성을 평가할 수 있는 방법에 대한 검토와 특히 내열충격성에 대해 J.W.Kim등의 시험방법을 참고하여 시간이 적게 걸리면서 저 비용으로 열 충격특성을 평가할 수 있는 시험법을 고안하는 것이다. 이를 위한 방법으로 육성용접부의 내균열성을 평가하기 위한 상온 Bending을 실시하였고, 내열충격성을 평가하기 위한 염욕로를 이용하는 고온 Bending을 고안하여 실시하였다. 상온 Bending, 고온 Bending 모두 3점 굽힘시험을 적용하였다. 고온 Bending의 가열방법으로는 염욕로를 사용하여 시편이 대기중에서 약 $850^{\circ}C$의 온도가 될 수 있도록 하였다. 시편은 각각 열처리를 하여 요구 경도를 확보하였고, 이를 염욕로에서 5분간 가열 및 유지하여 취출 후 굽힘하중을 가하여 변위의 정도로 열충격을 평가하는 방법을 사용하였다. 상온 Bending은 극한변형량과 파단부 극한응력으로, 고온 Bending은 고온 극한변형량으로 평가를 하였고, 외국산 FCW를 사용한 육성용접부를 비교대상으로 하였다. 평가 결과 개발된 국산 $3.2{\Phi}$ 태경 FCW의 성능은 외국산 FCW와 유사하거나 우수한 것으로 평가되었고, 실제 금형을 제작하여 현장에 적용한 결과 금형의 수명이 연장된 것이 나타났다.

  • PDF