• Title/Summary/Keyword: 열평형 시험

Search Result 47, Processing Time 0.023 seconds

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Determination of Enthalpy in the High Temperature Test Facility (고온 시험장치에서의 엔탈피 결정)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.224-227
    • /
    • 2011
  • In order to determine the enthalpy profile in the high temperature transpiration cooling test facility for the air-breating engine compartments, theoretical calculation and measurement for the flow of the test section are performed. The mass averaged enthalpy value determined by the heat balance and sonic throat methods is 10 MJ/kg. The centerline enthalpy value measured using the slug type copper calorimeter is 15 MJ/kg. Typically, the ratio of centerline and mass averaged enthalpy should be varies from 1.4 to 4. This facility has lower bound of enthalpy profile. It will be effective in testing of high temperature transpiration cooling.

  • PDF

Development and Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 Flight Model (EOS-C Ver.3.0 비행모델의 열제어계 개발 및 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.872-881
    • /
    • 2012
  • The Flight Model (FM) of a high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, was successfully developed by Satrec Initiative. We designed it to give improved thermal representatives compared with the Structural-Thermal Model (STM) by optimizing the thermal characteristics based on the STM thermal vacuum test results. We developed the FM and verified the workmanship by performing the acceptance level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) by the thermal balance test. As the result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0 FM.

THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE (정지궤도 위성의 열평형 시험 모델링 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

The Correlation of Thermal Analysis Model using Results of LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 열진공시험 결과를 이용한 열해석 모델 보정)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.620-621
    • /
    • 2010
  • Thermal models are made to verify the process that operate in space orbit. In this study, thermal analysis model correlation was performed to satisfy the criteria of correlation. Ground thermal vacuum test results are used for the correlation thermal model in the process of thermal model verification.

  • PDF

Design Verification of Environmental Control System by Flow Balance Test (유량평형시험을 통한 환경제어계통 설계 검증)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.608-615
    • /
    • 2012
  • In this study, we analyzed the system impedance of Unmanned Aerial Vehicle avionics bay and Environmental Control System(ECS), and estimated the proper air flow rate to be supplied avionics equipments. As the result of estimation, we evaluated the performance of ECS after analysing the flow balance rate and the air flow rate about each outlet port, and simultaneously decided the flow balance rate after evaluating the thermal substantiality by the thermal analysis of avionics bay. In order to verify the property of analysis result, we conducted the flow balance test using the actual avionics equipments and finally deduced the flow rate to be met system requirements of avionics equipments. Also, as the analysis results, we verified the satisfaction of system requirements at midium altitude condition and proved the performance characteristics of an Environmental Control System(ECS).

HAUSAT-2 STM(Structural-Thermal Model) Development and Launch Environment Test Result Analyses (HAUSAT-2 위성 STM 개발 및 발사환경시험 분석)

  • Chang, Jin-Soo;Hwang, Ki-Lyong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.95-105
    • /
    • 2005
  • The HAUSAT-2 nanosatellite which is scheduled to launch in 2008 is being developed by SSRL(Space System Research Lab.). The HAUSAT-2 STM(Structural-Thermal Model) was developed as the first system model to verify structural and thermal design margin. The qualification level vibration and thermal tests have been conducted on STM. This paper addresses the comparison of structural analysis and test results of HAUSAT-2 STM. It was shown that the natural frequency of HAUSAT-2 STM satisfies the stiffness requirements without structural damage in the random vibration test. The assembly and integration validity were also checked out through STM.

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Verification of Thermal Characteristics and Overturning Moment for Lateral Vibration System (수평가진 시스템의 열 특성 및 모멘트 성능 검증)

  • Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Moo;Moon, Nam-Jin;Lee, Dong-Woo;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.113-121
    • /
    • 2009
  • Shaker system is used to simulate the vibration from the launch environment. The vibration tests are performed in the vertical and lateral direction. For the lateral vibration test, the slip table system is used with shaker system. For the latest large satellite, vibration test adaptor is made of the steel. But slip table of lateral vibration is made of magnesium, so there is big difference of thermal expansion ratio between slip table and vibration test adaptor. This paper encompasses the following items; verification process of thermal characteristics and overturning moment and a solution for lateral vibration test with steel vibration test adaptor.

  • PDF