• Title/Summary/Keyword: 열차충돌

Search Result 62, Processing Time 0.023 seconds

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

A study on crash energy absorption design of passenger-car extreme structure of tilting train prototype (한국형 고속틸팅열차의 중간부 충돌에너지 흡수구조에 대한 연구)

  • Kwon T.S.;Jung H.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.326-330
    • /
    • 2005
  • Crahworthy design of trains is now indispensable procedure in modern railway vehicle design for ensuring the safety of passengers and crew. It is now widely recognized that a more strategic approach is needed in order to absorb higher level energy in a controlled manner and minimize passenger injuries effectively. The first design step in this strategic approach is the design of the front end structure(so called HE extremities) to absorb a large part of total impact energy and then the structure of passengers non-accommodation zones(so called HE extremities) is designed to absorb the rest of impact energy. In this paper, the passengers entrance door area is selected as the LE(low energy) extremities and the design of the LEE was carried out. The main part of LEE design procedures is the design of energy absorbing tubes. For this purpose, the several tube candidates are introduced and compared to each others with numerical crash simulation.

  • PDF

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.

Comparison of Simulation Models for Train Buffer Couplings (연결기용 완충기의 시뮬레이션 모델 비교)

  • Jang, Hyeon-Mog;Kim, Nam-Wook;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

Modeling of Railway Networks for LRT Test Line Using Petri Nets (페트리 네트를 이용한 경량전철시험선 선로의 모형화)

  • Choi, Kwon-Hee;Song, Joong-Ho;Choi, Kyu-Hyoung;Hwang, Hyun-Chyeol
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.570-576
    • /
    • 2010
  • This paper presents the use of the Petri Net Method for modeling railway tracks. The Petri Net is defined as having the characteristics of a parallel, asynchronous, distributed, inconclusive, statistical, etc. information handling system and is a graphical mathematical modeling tool to study the specifics of active movement. It's proven use can be seen at the Korean type Light Rail testing tracks where they modelled the Petri Net method using the train track encasing the segment, track, turnout, and platform as a singular factor and even though two trains either travelling in the same or opposite directions on a single test track equipped with a sidetrack can travel with the guarantee that the two will not collide.

A Conceptual Design on Training Simulator of the Special Railway Vehicle for Multiple Tie Tamper (궤도보수 특수철도차량 탬퍼 모의훈련연습기의 개념설계)

  • Ahn, Seung-Ho;Kang, Jeong Hyung;Kim, Chul Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.430-436
    • /
    • 2018
  • Special railway vehicles for track maintenance are equipped with a tamping device that adjusts various track trajectories to reduce the vibration of rolling stock and improve ride quality during trains passing over a track. The development of a simulator that can confirm the error of the actual tamping work is important for reducing human error in the linearization of the track misalignment. In this study, to improve the reality and training effect of conventional 2D simulator, 3D simulator modeling was implemented for tamping work of special railway vehicles in virtual space. The problem of buffering during high screen quality of tamping work was solved using the Unwrap UVW mapping technique of a low polygon extracted from high quality polygon modeling. The human error in the training of the tamping work was detected by the principle of circle and square collision when the tamping tyne and the sleeper collided. In addition, vibration of the driving chair was generated at the same time as the collision, and the number of the sleeper strikes is displayed on the simulator exercise screen. Owing to the scattering of railway ballast protruding from the sleepers, which had a serious effect on the safety of the vehicle, the gravel bouncing effect of the tamping unit was applied.

Study of Influence of Wheel Unloading on Derailment Coefficient of Rolling Stock (철도차량의 윤중 감소가 탈선계수에 미치는 영향 연구)

  • Koo, Jeong Seo;Oh, Hyun Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • A new theoretical derailment coefficient model of wheel-climb derailment is proposed to consider the influence of wheel unloading. The derailment coefficient model is based on the theoretical derailment model of a wheelset that was developed to predict the derailment induced by train collisions. Presently, in domestic derailment regulations, a derailment coefficient of 0.8 is allowable using Nadal's formula, which is for a flange angle of $60^{\circ}$ and a friction coefficient of 0.3. However, theoretical studies focusing on different flange angles to justify the derailment coefficient of 0.8 have not been conducted. Therefore, this study theoretically explains a derailment coefficient of 0.8 using the proposed derailment coefficient model. Furthermore, wheel unloading of up to 50% is accepted without a clear basis. Accordingly, the correlation between a wheel unloading of 50% and a derailment coefficient of 0.8 is confirmed by using the proposed derailment coefficient model. Finally, the validity of the proposed derailment coefficient model is demonstrated through dynamic simulations.

Development of Nondestructive System for Detecting the Cracks in KTX Brake Disk Using Rayleigh Wave (Rayleigh Wave를 이용한 KTX 제동 디스크의 균열 검측 시스템 개발)

  • Kim, Min Soo;Yeom, Yun Taek;Park, Jin-Hyun;Song, Sung Jing;Kim, Hak Joon;Kwon, Sung Duck;Lee, Ho Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.

The Risk Analysis for the Rail Transport of Explosives (폭약류의 철도수송에 따른 리스크 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 2011
  • This study presented quantitative risk analysis in case of transporting explosive materials by railway. Accident types were classified into accidents of in station and in transit. And the study presented an initial value of accident frequency through derailment accident and crushing one according to each type, and drew the results of accident frequency through event tree analysis. Damage impact evaluation used TNT equivalent method and probit analysis method. As the result of risk evaluation, railway transportation of explosive materials passing through areas which are high in population density is appeared to be able to cause a large number of personnel injury when occurring accidents. Specially, the accident of explosive transportation combined with petroleum was forecasted as easily resulting in large explosive accident. Consequently, there is a necessity to reduce consequences by decreasing passage through areas where are high in population density, and take measures for lessening the risks in case of transporting dangerous explosive materials.

An Accident Analysis for Reducing Railway Staff Fatalities (종사자의 직무사고 현황분석에 관한 연구)

  • Kwak, Sanglog;Park, Chanwoo;Wang, Jongbae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • As a result of investment in railway safety focusing on passenger safety, the train accident rate has been reduced by half domestically and we have reached a high level of safety compared to other countries and other transportation modes. However, accidents related to staff are still at a high ratio compared to other countries. There have been few studies on staff safety and no relevant systematic safety measures have been implemented. More than 90% of staff fatalities occurred from rolling stock in motion and electrification, which are representative railway accidents. In this study, causes of accidents, and current safety measures for staff are analyzed focusing on trains in motion. The results can be utilized for developing new safety measures.