• Title/Summary/Keyword: 열전달모델

Search Result 454, Processing Time 0.025 seconds

A Study on the Boil-Off Rate Prediction of LNG Cargo Containment Filled with Insulation Powders (단열 파우더를 채용한 LNGCC의 BOR예측에 관한 연구)

  • Han, Ki-Chul;Hwang, Soon-Wook;Cho, Jin-Rae;Kim, Joon-Soo;Yoon, Jong-Won;Lim, O-Kaung;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • A BOR(Boil-Off Rate) prediction model for the NO96 membrane-type LNG insulation containment filled with superlite powders during laden voyage is presented in this paper. Finite element model for the unsteady-state heat transfer analysis is constructed by considering the air and water conditions and by employing the homogenization method to simplify the complex insulation material composition. BOR is evaluated in terms of the total amount of heat invaded into LNGCC and its variation to the major variables is investigated by the parametric heat transfer analysis. Based upon the parametric results, a BOR prediction model which is in function of the LNG tank size, the insulation layer thickness and the powder thermal conductivity is derived. Through the verification experiment, the accuracy of the derived prediction model is justified such that the maximum relative difference is less than 1% when compared with the direct numerical estimation using the FEM analysis.

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis (CFD 해석을 통한 Plain형 핀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 연구)

  • Liu, Zhao;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.615-624
    • /
    • 2014
  • The fin-tube heat exchanger being used for industrial boiler, radiator, refrigerator has been conducted in various studies to improve it's performance. In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed according to longitudinal pitch, location of vortex generator, bump phase and number of the tube surface about the plain fin-tube heat exchanger. The boundary condition for the CFD (Computational Fluid Dynamics) analysis applied with the SST (Shear Stress Transport) turbulence model assumed as the tube surface temperature of 333 K, the inlet air temperature of 423-438 K and the inlet air velocity of 1.5~2.1 m/s. The analysis results indicated that the heat transfer coefficient is not affected highly by the longitudinal pitch, and the heat transfer characteristics was more favorable when the vortex generator was located in front of the tube. Also the bump phase of the tube surface indicated that circle type was more appropriate than serrated type and triangle type in the characteristics of heat transfer and pressure drop, and the sixteen's bump phase of circle type was most favorable.

Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation (다공성 단열재를 포함한 열방어구조의 열 특성 분석)

  • Hwang, Kyungmin;Kim, Yongha;Lee, Jungjin;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.26-34
    • /
    • 2016
  • In a number of industries, porous insulations have been frequently used, reducing thermal insulation space through excellent performance of the thermal insulation's characteristics. This paper suggests an effective thermal conductivity prediction model. Firstly, we perform a literature review of traditional effective thermal conductivity prediction models and compare each model with experimental heat transfer results. Furthermore, this research defines the effectiveness of thermal conductivity prediction models using experimental heat transfer results and the Zehner-Schlunder model. The newly defined effective thermal conductivity prediction model has been verified to better predict performance than other models. Finally, this research performs a transient heat transfer analysis of a thermal protection system with a porous insulation in a high speed vehicle using the finite element method and confirms the validity of the effective thermal conductivity prediction model.

Design Optimization of Bracket for Wear Sensor of Automobile Brake Pads Based on Dynamic Kriging Surrogate Model (자동차 브레이크 패드 마모량 측정센서 브라켓의 다이나믹크리깅 대리모델 기반 설계최적화)

  • Jun-Yeong Jeong;Jung Joo Yoo;Kyung Seok Byun;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • This paper introduces an optimized design for a sensor bracket used to measure the wear amount of an automobile brake pad, based on a dynamic kriging surrogate model. During testing, the temperature of the brake pad can increase beyond 600℃, which often causes sensor malfunction. Therefore, it is essential to optimize the shape of the sensor bracket to minimize heat transfer. To reduce the computational cost of the optimization, the heat-transfer simulation is replaced by a dynamic kriging surrogate model. Dynamic kriging utilizes the best combination of correlation and basis functions and constructs an accurate surrogate model. Following optimization, the temperature of the sensor position decreases by 7.57%. The results from the surrogate model under optimum conditions are verified by a heat-transfer simulation, and the design optimization using a surrogate model is found to be effective.

Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector (평판형 태양열 집열기의 압력강하 및 열전달 성능 향상에 관한 수치해석적 연구)

  • Heo, Joo-Nyoung;Shin, Jee-Young;Lee, Dooho;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.316-323
    • /
    • 2013
  • The use of artificial roughness in various forms of shapes and sizes is the most common and effective way to improve the performance of a flat-plate solar collector. In the present study, numerical analysis on heat transfer and pressure drop was performed in a rectangular channel with various rib arrays. The uniform heat flux is applied to the channel from the upper side. The forms of ribs considered in this study were rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$ and wave $60^{\circ}$. Air is the working fluid, and the Reynolds number ranges from 3200 to 17800. Nusselt number and friction factor were investigated to predict the performance of the system with various type of ribs. The average Nusselt number and pressure drop were increased with the increase of velocity in all types of ribs. The highest heat transfer and pressure drop occurred for the baffle $90^{\circ}$, but highest performance factor considering heat transfer and pressure drop together occurred for the groove $60^{\circ}$. Therefore, heat transfer and pressure drop should be considered together when a flat plate solar collector is designed.

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System (열방어구조의 다공성 단열재 유효 열전도율 예측 모델링)

  • Hwang, Kyung-Min;Kim, Yong-Ha;Kim, Myung-Jun;Lee, Hee-Soo;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.163-172
    • /
    • 2017
  • Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.