• Title/Summary/Keyword: 열적 쾌적감

Search Result 20, Processing Time 0.023 seconds

Water Vapour Transfer through Fabrics for Outdoor Activities (야외 운동복용 직물에서의 수분전달)

  • O, Ae Gyeong;Park, Jeong Wan
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.66-66
    • /
    • 2003
  • 야외 운동(outdoor activities)복에 사용되는 소재들은 외부로부터 신체를 안전하게 보호해 주어야 될 뿐 아니라 쾌적하게 유지시켜 주어야 한다. 의복착용시 쾌적감에 결정적인 영향을 미치는 인자는 몸의 열적 평형상태를 유지하기 위한 수단인 수분전달 특성이다. 본 연구는 여러 종류의 야외 운동복용 직물에서의 수분전달 현상을 조사하여 규명하므로써 이 직물들이 실제 의복생활에 응용될 의복계 (clothing system)를 형성하였을 때의 수분전달 현상을 설명하고자 하는 기초연구이다. 연구의 결과는 base layer용, mid layer용 직물들이 shell layer로 쓰이는 waterproof breathable 직물보다 수분 전달률이 높았으며, waterproof breathable 직물의 수분 전달률은 microfibre 직물, PTFE-laminated 직물 그리고 polyurethane coated 직물 순 이었다. 또한 polyurethane 직물에서는 back coated 직물이 face-coated 직물보다 수분 전달률이 높았다.

Water Vapour Transfer through Fabrics for Outdoor Activities (야외 운동복용 직물에서의 수분전달)

  • Oh, Ae-gyeong;Park, Jung-whan
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.192-196
    • /
    • 2003
  • 야외 운동(outdoor activities)복에 사용되는 소재들은 외부로부터 신체를 안전하게 보호해 주어야 될 뿐 아니라 쾌적하게 유지시켜 주어야 한다. 의복착용시 쾌적감에 결정적인 영향을 미치는 인자는 몸의 열적 평형상태를 유지하기 위한 수단인 수분전달 특성이다. 본 연구는 여러 종류의 야외 운동복용 직물에서의 수분전달 현상을 조사하여 규명하므로써 이 직물들이 실제 의복생활에 응용될 의복계(clothing system)를 형성하였을 때의 수분전달 현상을 설명하고자 하는 기초연구이다. 연구의 결과는 base layer용, mid layer용 직물들이 shell layer로 쓰이는 waterproof breathable 직물보다 수분 전달률이 높았으며, waterproof breathable 직물의 수분 전달률은 microfibre 직물, PTFE-laminated 직물 그리고 polyurethane coated 직물 순 이었다. 또한 polyurethane 직물에서는 back coated 직물이 face-coated 직물보다 수분 전달률이 높았다.

Study on the Temperature Distribution of Cabin under Various Car Heating Modes (난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석)

  • Cho, Youngmin;Yoon, Young-Kwan;Park, Duck-Shin;Kim, Tae-Wook;Kwon, Soon-Bark;Jung, Woo-Sung;Kim, Hee-Man
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 2012
  • Abnormal climate or weather is more frequently reported nowadays due to the global climate change. Especially, extremely low temperature in winter season may cause bad thermal discomfort of passengers. In this study, the effect of car heating modes on cabin temperature change and distribution was studied by using a real-scale environmental chamber for passenger cabin. It was found that the cabin temperature rose quickly at the initial stage of heating system operation, but it stopped increasing after certain point. And, temperature was higher when the height from the floor was higher. Based on the obtained result, the way to minimize the decrease of passengers' thermal comfort was suggested.

The Effect of Tree Density of Pinus koraiensis Forest on the Thermal Comfort and the Physiological Response of Human Body in Summer Season (잣나무림의 입목밀도가 여름철 온열환경 및 인체 생리반응에 미치는 영향)

  • Park, Bum-Jin;Kyeon, Chiwon;Choi, Yoonho;Yeom, Dong-geol;Kim, Geonwoo;Joung, Dawou
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • This study was conducted to examine the effect of tree density of Pinus koraiensis forest on the thermal comfort and the physiological response of human body in summer season. As the indicators of thermal comfort were used the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), while the heart rate variability was used for the physiological indicator of subjects. The subjects were 15 physically healthy men and women in their 20s ($23.7{\pm}1.7$ years old). The subjects sat in each site to measure HRV for 5 minutes and the thermal comfort of each site was measured. As a results, it was proven by PMV and PPD that the Pinus koraiensis forest with 120% tree density was thermally more comfortable than the Pinus koraiensis forest with 80% tree density. In case of the subjects' physiological response, the Pinus koraiensis forest with 120% tree density showed significantly higher HF of HRV than the Pinus koraiensis forest with 80% tree density and significantly lower LF/HF. Therefore, the findings of this study scientifically proved that the Pinus koraiensis forest with 120% tree density is thermally more comfortable and physiologically more relaxing than the Pinus koraiensis forest with 80% tree density.

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Winter (겨울철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Bae, G.N.;Lee, C.H.;Lee, C.S.;Choi, H.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.310-318
    • /
    • 1995
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 138 occupants were questioned to evaluate Korean thermal comfort in office building in winter. Thermal sensation was estimated by using PMV(Predicted Mean Vote) and ET*(New Effective Temperature) indices. Comparing present experimental result with international standards and that of other research, Korean thermal responses were discussed. Seasonal difference between summer and winter was also discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained; TSV=0.432ET*-8.814 and neutral temperature is $20.4^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $19.4{\sim}22.4^{\circ}C$.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

A Study on the Thermal Comfort to the Weight Reduction Rate and Fabric Structural Parameters of PET Fabrics (PET직물의 감량율과 직물구조인자에 따른 열적 쾌적성 변화에 관한 연구)

  • 이희준;이민수;김승진;조대현;김태훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.816-825
    • /
    • 1998
  • This study surveys the thermal property and air permeability to the weight reduction rate of PET fabrics. For this purpose, 12 kinds of satin and 18 kinds of plain weave fabrics are prepared with change of the physical properties such as weft yarn count, t.p.m. and density. The weight reduction rate was 0%, 12%, 25% and 30%. The warm/cool feeling(Qmax), thermal insulating value(T.I.V.) and thermal conductivity(K) were measured by KES-F7 System and discussed in relation with the weight reduction rate, weft yarn linear density, t.p.m., weft density of fabric and weave structure.

  • PDF

Development and Evaluation of Functional Lab Gowns in Point of Thermoregulation and Thermal Comfort (기능성 실험 가운의 개발 및 평가 -체온조절 및 온열 쾌적성을 중심으로-)

  • 최정화;이주영;김소영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.2
    • /
    • pp.292-302
    • /
    • 2004
  • The purpose of this study was to evaluate thermal properties of lab gowns developed from the point of safety and work efficiency. We evaluated thermal and subjective responses of subjects wearing functional new lab gowns (Type B, C, D) and a popular lab gown on the market (Type A). Type B was a new lab gown made of woven fabric with functional cuffs. Type C was a new apron made of woven fabric with arm protectors. Type D was a new lab gown made of non-woven material with functional cuffs and openings around the armpits. Temperature in the climatic chamber was set at 19$^{\circ}$C as an indoor temperature in winter and at 24$^{\circ}$C in summer. There were no significant differences in rectal temperature and heart rate among four types of gowns and between two air temperatures for 120 min. Mean skin temperature was much higher in the type A and B than in He type C and D (p .05). In the 19$^{\circ}$C air, clothing microclimate temperature on the back was the highest in the type B and was the lowest in the type C (p .05). Clothing microclimate humidity was not significant differences among gowns. In subjective .esponses, subjects perceived that Type B was the warmest gown in the 19$^{\circ}$C and the hottest and more humid in the 24$^{\circ}$C than other gowns. Inversely, type C was the coolest gown among four gowns. Both in the 19$^{\circ}$C and in the 24$^{\circ}$C, the Type D had gained most responses of being comfortable. In conclusion, the temperature difference of 5$^{\circ}$C was more of an influencing factor than the difference from four types of lab gowns. Secondly, we recommend the manufacturers to make lab gowns with functional cuffs for safety purposes. Thirdly, the spread of the type of apron with arm protector will contribute to increase of the frequency of wearing in summer. Fourthly, it is necessary to study continuously about lab gowns with non-woven materials for researchers exposed to toxic chemical and biological materials.

Experimental Study on Thermal Comfort Sensation of Korean and Physiological Signal Part II : Analysis of Subjective Judgement in Summer Experiment (한국인의 온열쾌적감 및 생리신호에 관한 연구 ( Part II : 여름철 체감실험 결과 ))

  • 김동규;주익성;금종수;최광환;최호선;이길랑
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.113-117
    • /
    • 1997
  • 본 논문은 여름철 체감실험에 대한 결과이다. 유니폼을 착용한 각 피험자(중학생, 대학생, 고령자)는 90분동안 환경시험실에 체재하면서 의자에 앉아 전신온냉감 및 쾌불쾌감을 신고하였다. 체감실험동안 피부온도는 인체의 3곳에서 측정하였고 피험자는 10분 간격마다 전신온냉감 및 쾌불쾌감을 신고하였다. 환경물리량및 인체 피부온도는 매 20초 간격으로 측정하였다. 여름철 체감실험 결과 아래의 결론을 얻었다. 1)평균피부온도가 증가함에 따라 TSV는 선형적으로 능가하며 열적으로 중립감을 느낄 때으리 평균피부온도는 고령자의 경우 남자 33.8$^{\circ}C$, 여자 34.3$^{\circ}C$이고, 대학생 남자의 경우 34.1$^{\circ}C$ ,여자 33.8$^{\circ}C$, 중학생의 경우는 34.4$^{\circ}C$이다. 2)발한량과 평균피부온도의 관계는 각 계층 모두 평균피부온도 34$^{\circ}C$를 전후로 급격히 상승함을 알 수 있다. 3)전신온냉감이 중립일 경우 고령자 남자의 SET*=25.6$^{\circ}C$, 고령자 여자 28.4$^{\circ}C$, 대학생 남자 26$^{\circ}C$, 대학생여자 26.9$^{\circ}C$, 중학생 27.1$^{\circ}C$이었다.

  • PDF

Evaluation of the Thermal Properties of Disposable Coveralls for Railroad Carriage Maintenance Workers (철도 차량 정비 작업자를 위한 일회용 부직포 작업복의 온열적 성능 평가)

  • 최정화;이주영;김소영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.8
    • /
    • pp.1175-1185
    • /
    • 2004
  • This study evaluated thermo-physiological and subjective properties of improved disposable coveralls for railroad carriage maintenance through climatic chamber trials and a filed study. Subjects wore five kinds of disposable coveralls (Type A: a disposable coverall on the market, Type B: a coverall with an improved hood and size-adjustable design, Type C: a coverall with a portable hood, Type D: a coverall with small holes for ventilation, Type E: a sleeveless coverall, Type F: a separated type of coverall with half sleeves) The air temperature in the climatic chamber was set in 9$^{\circ}C$ and 30$^{\circ}C$ For each condition, subjects simulated the railroad work for 120min. and rectal temperature, skin temperatures, clothing microclimate and subjective sensations were measured. The results of chamber trials showed rectal temperature and clothing microclimate did not display significant differences by clothing type. In 30$^{\circ}C$ air temperature, mean skin temperature was higher in Type E and Type F than in Type A(p<0.05) but between the improved coveralls(B-F), we could not find any significant difference. In the case of thermal comfort, the most preferred types were Type B and Type C in 9$^{\circ}C$ and Type F in 30$^{\circ}C$. All subjects felt more comfortable in the improved coveralls than in coveralls of the market (Type A). In field study, workers preferred Type B, Type C and Type F to Type A but the most favorite type differed by the specific type of work. Especially, workers were dissatisfied that Type D tore easily due to lots of small holes around the armpits and Type I did not protect workers' shoulder and arms from oil contamination. According to the climatic chamber trials and field study, the most effective coveralls were Type B and Type C for winter and Type F for summer.