• Title/Summary/Keyword: 열적산화

Search Result 279, Processing Time 0.025 seconds

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.

Comparative Analysis of the Characteristics of Natural Zeolites from Mongolia, Korea, and the United State (몽골, 한국, 미국 천연 제올라이트의 특성 비교 분석)

  • Battsetseg, Bayarsaikhan;Kim, Hu Sik;Kim, Young Hun;Kim, Jeong Jin;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.141-151
    • /
    • 2022
  • The 16 natural zeolites collected from Mongolia (6 types), the United States (1 type), and Korea (9 types) were characterized by XRD, XRF, TGA, DTA, and CEC analysis. All 16 samples are composite minerals. Two or more mineral phases co-exist and consist primarily of minerals such as clinoptilolite, heulandite, mordenite, and chabazite. In certain samples, minerals like illite and quartz were present as impurities. The XRF analysis showed that the 16 natural zeolites contain SiO2, Al2O3, K2O, CaO, Na2O, MgO, and Fe2O3 oxides. The cation exchange capacity of the U-1 sample was 223.3 meg/100 g, which is higher than the rest of the samples. M-6 sample in Mongolian natural zeolite and K-1 sample in Korean natural zeolite showed the highest cation exchange capacity at 166.6 meg/100 g. As a result of thermal differential and thermos gravimetric analysis, all 16 samples showed excellent thermal stability up to 600℃.

고색재현성 디스플레이 응용을 위한 고안정성 양자점 함유 유리색변환소재

  • 정운진;이한솔;이진주
    • Information Display
    • /
    • v.23 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • 반도체 기반 양자점 (QD)소재와 CsPbX3 (X=Cl, Br, I)기반 perovskite 양자점 또는 나노결정 소재(PNC)는 매우 우수한 양자효율과 좁은 발광 선폭으로 고색재현성 디스플레이 색변환 소재 또는 발광 소재로서 각광을 받고 있다. 그러나, 기존 화학적 합성법을 통해 제조되는 QD 및 PNC 소재는 취약한 열 및 화학적 안정성으로 인해 장기 내구성의 개선이 요구된다. 이들 QD 및 PNC 소재는 모두 완전 무기 소재인 산화물 기반 유리 소재내에 생성이 가능하며, 이를 통해 장기 내구성을 근본적으로 개선할 수 있다. 반도체 기반 QD 함유 유리소재 (QDEG)의 경우, 유리 내 core/shell 구조를 가진 QD의 생성으로 양자효율의 향상이 가능했으나, 콜로이드 기반 양자점 (cQD)과 달리 다중 shell의 형성이 어려워 양자효율이 제한되고, 발광 선폭이 넓어 고색재현성 디스플레이용 색변환 소재로 적용되기에는 아직 한계가 있다. 한편, Perovskite 양자점 (또는 나노결정) 함유 유리소재 (PNEG) 소재는 QDEG과 달리 콜로이드 기반의 PNC (c-PNC)가 가지는 우수한 양자효율과 20 nm 수준의 좁은 선폭을 유리 내에서도 가지며, c-PNC 대비 열적, 화학적 및 광학적 안정성이 획기적으로 향상되어 실질적인 응용 가능성을 높이고 있다. 특히, 일반적인 용융-급랭법으로 제조하여 대량생산에 용이하고, 분말 또는 판상 등 다양한 형태로의 제작이 가능한 장점이 있다. 현재까지 제조된 PNEG의 최대 PL-QY는 450 nm 여기 시 녹색 및 적색에서 약 60% 수준이며, Al2O3 분말을 이용할 경우 최대 80% 수준까지 달성이 가능하다. 또한, PNEG과 blue LED를 이용하여 백색 LED를 구현할 경우 color filter를 적용하지 않을 때, NTSC 대비 최대 약 130 % 수준의 높은 색재현 영역을 보여 주고 있으며, 실제 LCD용 BLU로 적용 시 기존 상용 c-QD 소재와 동등 이상의 색재현 영역을 보이고 있어, 실질적인 응용 가능성이 매우 높음을 확인하였다. PNEG의 상업적인 응용을 위해서는 몇 가지 추가적인 연구 개발이 필요하다. 기존 c-QD 또는 c-PNC는 나노 수준 크기의 입자가 액상에 분산된 형태로 입도 제어가 용이하나, PNEG의 경우 분말 제조 시 유리 형성 후 분쇄를 통해 제조되며, 입도가 대개 수십 ㎛ 이하로 작아질 경우 PL-QY가 저하되어, 향후 잉크젯 공정 응용을 위해서는 고효율의 분말 제조공정 개발이 필요하다. 또한, 유리 소재의 경우 절연체로서 기존 QD 소재 대비 electro-luminescence(EL) 소자의 활성층으로 사용하는데 제약이 있어 PNEG을 이용한 EL 소자 제작에 대한 연구도 필요하다. 마지막으로, 기존 c-PNC 소재와 같이 Pb가 함유되지 않은 PNEG 소재의 개발이 선결되어야 할 것으로 판단된다. 이와 같은 해결 과제들에도 불구하고, PNEG 소재는 기존 c-QD 소재 대비 매우 우수한 안정성을 기반으로 고품위 고색재현 디스플레이용 색변환 소재로서 다양한 응용에 활용될 수 있을 것으로 기대된다.

Surface analysis of rayon-based carbon nanofibers and activated carbon fibers (레이온을 이용한 카본나노섬유와 활성카본섬유의 표면 특성분석)

  • Kim, Youn Jung;Ryu, Sang Hoon;Lim, Woo Taik;Choi, Sik Young
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-301
    • /
    • 2007
  • Carbon nanofibers (CNFs) are non-microporous materials with a high surface area ($100{\sim}200m^2/g$) and high purity. Therefore, the material has a high potential for use as catalyst support. Activated carbon fibers (ACFs) are of increasing concern with regard to the levels of toxic air pollutants emitted from high-technology industry. Rayon-based CNFs and ACFs was subjected to thermal oxidation under a wide variety of temperature and air conditions to modify the surface properties. Rayon-based CNFs and ACFs were prepared by using thermal chemistry. CNFs were synthesized at temperatures above $600^{\circ}C$ in an air atmosphere and grew with increased temperature and air conditions. After heating at $800^{\circ}C$ for 72 hr, carbonized rayon with ACFs had $2,662m^2/g$ (BET) of surface area and $1.41cm^3/g$ of pore volume. The resulting ACFs had a 99% surface area in which pore size was 10 nm or less, and a 60 % surface area in which pore size was 2 nm or less.

Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction (Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.125-131
    • /
    • 2024
  • In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.

Hydraulic-Thermal-Mechanical Properties and Radionuclide Release-Retarding Capacity of Kyungju Bentonite (경주 벤토나이트의 수리-열-역학적 특성 및 핵종 유출 저지능)

  • Jae-Owan Lee;Won-Jin Cho;Pil-Soo Hahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Studies were conducted to select the candidate buffer material for a high-level waste (HLW) repository in Korea. This paper presents the hydraulic properties, the swelling properties, the thermal properties, and the mechanical properties as well as the radionuclide release-retarding capacity of Kyungju bentonite as part of those studies. Experimental results showed that the hydraulic conductivities of the compacted bentonite were very low and less than $10^{-11}$m/s. The values decreased with increasing the dry density of the compacted bentonite. The swelling pressures were in the range of 0.66 MPa to 14.4 ㎫ and they increased with increasing the dry density. The thermal conductivities were in the range of 0.80 ㎉/m $h^{\circ}C$ to 1.52 ㎉/m $h^{\circ}C$. The unconfined compressive strength, Young's modulus and Poison's ratio showed the range of 0.55 ㎫ to 8.83 ㎫, 59 ㎫ to 1275 ㎫, and 0.05 to 0.20, respectively, when the dry densities of the compacted bentonite were 1.4 Ms/㎥ to 1.8 Mg/㎥. The diffusion coefficients in the compacted bentonite were measured under an oxidizing condition. The values were $1.7{\times}10^{-10}$m^2$/s to 3.4{\times}10^{-10}$m^2$/s for electrically neutral tritium (H-3), 8.6{\times}10^{-14}$m^2$/s to 1.3{\times}10^{-12}$m^2$/s for cations (Cs, Sr, Ni), 1.2{\times}10^{-11}$m^2$/s to 9.5{\times}10^{-11}$m^2$/s for anions (I, Tc), and 3.0{\times}10^{-14} $m^2$/s to 1.8{\times}10^{-13}$m^2$/s $for actinides (U, Am), when tile dry densities were in the range of 1.2 Mg/㎥ to 1.8 Mg/㎥. The obtained results will be used in assessing the barrier properties of Kyungju bentonite as a buffer material of a repository in Korea.n Korea.

  • PDF

Phytochemical compounds and quality characteristics of spray-dried powders with the blanching condition and selected forming agents from pressed extracts of Ligularia fischeri leaves (블랜칭 처리 및 부형제 종류에 따른 곰취 착즙액 분무건조 분말의 phytochemical 성분 및 품질특성)

  • Kim, Jae-Won;Park, In-Kyung;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.659-667
    • /
    • 2013
  • This study was performed to determine the effects of the blanching condition (immersion ratio 1:15 (w/v) for 3 min at $95^{\circ}C$, and solution containing 1% sodium chloride) and selected forming agents (dextrin DE=10, dextrin DE=20, ${\beta}$-cyclodextrin; each forming agents added 5%) on the phytochemical compounds and quality characteristics of Ligularia fischeri leaves. The moisture was not affected by the forming agent. The color of a, b and chroma values were low in the blanching treatment groups and were significantly lowest with ${\beta}$-cyclodextrin (CD). The polyphenol and flavonoid contents in the blanching treatment groups were higher than those in the non-blanching-treatment group. The ascorbic acid content was higher in the non-blanching-treatment group and was significantly highest in the group treated with dextrin (DE=10) whereas the blanching treatment groups showed lower dehydroascorbic acid content than the non-blanching-treatment group. The water absorption was higher in the non-blanching-treatment group and was significantly highest in the group treated with CD. The water solubility in the blanching treatment groups treated with dextrin (DE=20) and CD was higher than that in the blanching treatment group treated with DE=10. The total chlorophyll and chlorophyll a and b contents were high in the blanching treatment group treated with CD, and for the total carotenoid contents, the same tendency as that seen with the chlorophyll content was observed. With regard to the particle diameter, those in the blanching treatment groups were lower than that in the non-blanching-treatment group and was significantly lowest in the blanching treatment groups treated with DE=20 and CD. The result of SEM observation showed that the spray-dried powders in blanching treatment groups treated with the DE=20 and CD forming agents had uniform particle distribution.

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.