• Title/Summary/Keyword: 열저항식

Search Result 106, Processing Time 0.027 seconds

Thermal Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 열적 성능 평가)

  • Karng, Sanrng-Woo;Lee, Suk-Won;Hwang, Kyu-Dae;Kim, Seo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1864-1869
    • /
    • 2007
  • In this study, we compare thermal performance between four different types of cold plates for humanoid robot cooling. Two commercially available cold plates made of copper have different dimensions and internal flow paths: One has $20{\times}20$ $mm^2$ base area with micro-channels and the other has $62.5{\times}62.5$ $mm^2$ base area with 85 round pin-fins. And two different types of cold plates of $20{\times}20$ $mm^2$ base area with 7 mm high are made of PC (polycarbonate), which aims to reduce the weight of cooling system. All cold plates are mounted on a $20{\times}20$ $mm^2$ copper block with two cartridge heaters of 30 $W/cm^2$. The overall heat transfer coefficient and thermal resistances for the liquid-cooled cold plates are obtained. The copper cold plate with micro-channels showed the best performance. Polycarbonate cold plates display fairly good thermal performance with more reduced system weight.

  • PDF

Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite (CF3327 평직 복합재료의 열전도도)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2002
  • The purpose of this study is to measure and predict the thermal conductivity of CF3327 plain-weave fabric composite made by Hankuk Fiber, Co. An experiment apparatus based on the comparative method has been made to measure the thermal conductivities of the composite material. Its accuracy was proved by measuring the thermal conductivity of graphite which is well-known. Micro-mechanical approaches are useful to assess the effect of parameters such as fiber and matrix material properties, fiber volume fraction and fabric geometric parameters on the effective material properties of composites. In this study, prediction was based on the concept of three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit ceil model that characterized the periodically repeated pattern of a plain weave. The numerical results were compared with experimental one and good agreement was observed. Also, the effects of fiber volume fraction on the thermal conductivity of several composites has been investigated.

Thermal Management of a Ni/MH Battery Module for Electric Vehicle (전기자동차용 Ni/MH 전지 Module의 열관리기술)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1034-1040
    • /
    • 1997
  • Temperature distribution of battery module consists of 11 batteries of 90Ah rate is analyzed using commercial software NISA II. Equivalent thermal resistance network is used to reduce the number of element in calculating heat transfer through a medium composed of several different thermal conductivity layers. Orthotropic model is used to put different thermal conductivity values according to Cartesian coordinate. Aluminum cooling fins are inserted in the middle of batteries to reduce battery module temperature. The cooling fin at the end of the module does not necessary in reducing maximum temperature. Combined effect of front and side cooling fin is analyzed to reduce the temperature difference among batteries. The maximum temperature difference among batteries is reduced within $3^{\circ}C$ when 4 aluminum cooling tin of 1mm thickness is inserted in battery module.

  • PDF

플라즈마 전해산화 공정 중 전해액 내의 인산염 변화에 따른 알루미늄 합금 산화피막의 형성

  • Yun, Sang-Hui;Kim, Seong-Cheol;Seong, Gi-Hun;Gang, Du-Hong;Min, Gwan-Sik;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.298-298
    • /
    • 2013
  • 플라즈마 전해산화기술은 알루미늄 소재에 대해 기존의 양극 산화막, 전해 경질크롬 도금 및 플라즈마 세라믹 용사기술 등에 의해 구현할 수 없는 고기능성을 부여하여 월등히 우수한 경도, 내부식, 내마모, 전기절연, 열저항, 피로강도 등을 얻을 수 있는 획기적인 기술이다. 또한 최근 환경에 대한 관심이 점차 높아지면서 친환경적 공정과정과 경금속 소재의 제품에 내구성을 향상시킬 필요성이 높아지고 있다. 이러한 요구에 부합하는 플라즈마 전해 산화기술은 알칼리 수용액 중에서 Al, Ti, Mg 등의 표면에 산화 피막을 형성시키는 기술로써 기존의 양극산화(Anodizing)을 대체 할 수 있다. 본 연구에서는 Al6061을 이용하여 플라즈마 전해산화 공정에 사용되는 전해액의 종류 및 농도, 시간의 변화에 따른 산화 피막의 변화를 내전압 측정 및 FE-SEM, EDS, XRD를 통해 분석하였다. 전해액에 sodium hexameta phosphate과 potassium phosphate를 이용하여 phosphate 종류의 변화에 따른 피막 특성의 변화를 연구하였다. 그로인해 phosphate의 종류 및 농도, 시간 변화를 이용하여 플라즈마 전해산화공정의 산화 피막 물성 제어를 할 수 있다.

  • PDF

Experimental Study on the Performance of an Electric Component Liquid Cooling System with Variation of the Waterblock Internal Shape (워터블록 내부형상에 따른 수냉식 전자부품 냉각장치 성능변화에 관한 실험적 연구)

  • Hahm, Hyung Chang;Park, Chang Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • An experimental study on the performance of a liquid electric component cooling system was performed. The thermal resistance and pressure drop at a heat sink were measured, for aluminum waterblocks with four different internal shapes, with either smooth surface, porous media filling, or with fins of 5 mm height, or of 7 mm height. The fins had 0.5 mm thickness, and the gap between the fins was 0.5 mm. The waterblock internal dimension was $36.5{\times}36.5{\times}7mm$. Compared with the waterblock with smooth surface, the thermal resistance reduction was 11%, 46%, and 42% for waterblocks with porous media filling, 5 mm, and 7 mm fins, respectively. A new dimensionless parameter was suggested to evaluate the waterblock performance, with the simultaneous consideration of thermal resistance and pressure drop. The performance of the waterblock with fins of 5 mm height was best by parameter.

Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics (소형 유기랭킨사이클 시스템 개발 및 작동특성에 관한 연구)

  • Yun, Eunkoo;Kim, Hyun Dong;Yoon, Sang Youl;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.919-926
    • /
    • 2013
  • Experiments were conducted to determine the operating characteristics of a small-scale ORC (organic Rankine cycle) system for various low-temperature heat sources. A small-scale ORC power generation system adopting R-245fa as a working fluid was designed and manufactured. Hot water was used as the heat source, and the temperature was controlled using 110-kW electric resistance heaters that provided temperatures of up to $150^{\circ}C$. An open-drive oil-free scroll expander directly connected to a synchronous generator was installed in the ORC unit. Experiments were conducted by varying the rotational speed of the expander under the same heat source temperature conditions. The factors that influence the performance of the small-scale ORC system were analyzed and discussed.

The studies on synthesis of aluminum oxide and boron oxide co-doped zinc oxide(AZOB) powder by spray pyrolysis (분무열분해법(Spray Pyrolysis)에 의한 알루미늄 산화물과 보론 산화물이 함께 도핑된 산화아연(AZOB: $Al_2O_3$ and $B_2O_3$ Co-doped Zinc Oxide)의 분말 제조에 대한 연구)

  • Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.731-739
    • /
    • 2014
  • Aluminum and boron co-doped zinc-oxide(AZOB) powders as transparent conducting oxide(TCO) were prepared by spray pyrolysis at $900^{\circ}C$. The micron-sized AZOB particles were prepared by spray pyrolysis from aqueous precursor solutions for aluminium, boron, and zinc. The micron-sized AZOB particle after the spray pyrloysis underwent post-heat treatment at $700^{\circ}C$ for 2 hours and it was changed fully to nano-sized AZOB particle by ball milling for 24 hours. The size of primary AZOB particle by Debye-Scherrer Equation and surface resistance of AZOB pellet were measured.

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Their Adsorption Characteristics of Uranium(II) - Adsorption Equilibrium and Kinetics of Uranium on RGP Resins - (인산기를 함유한 Glycidylmethacrylate-Divinylbenzene 공중합체의 제조와 우라늄 흡착특성(제2보) - RGP수지에 대한 우라늄의 흡착평형과 흡착속도 -)

  • Huh, Kwang Sun;Park, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.689-697
    • /
    • 1998
  • In this work, we studied the equilibrium, rate and rate determining step of uranium adsorption on RGP resins of MR type prepared by varying the degree of crosslinking and the amount of diluent. The equilibrium of uranium adsorption on RGP resins were well explained by Frendrich isotherm as well as Langmuir isotherm model. The amount of adsorption and adsorption rate increase with the adsorption temperature. The heat of the adsorption was 11 kcal/mol. The adsorption rates of uranium on RGP resins were decreased in the order of RGP-10(50)>RGP-1(50)>RGP-2(50)>RGP-5(50)>RGP-0(50) and RGP-2(75)>RGP-2(100)>RGP-2(50)>RGP-2(30)>RGP-2(0). The diffusion resistance of uranium into RGP resin increased as follows; molecular diffusion < pore diffusion < surface diffusion. On the other hand, the surface diffusion was more dominative than the pore diffusion in intraparticle region. Thus, this result indicates that the adsorption mechanism of uranium on RGP resins is intraparticle diffusion controlled.

  • PDF