• Title/Summary/Keyword: 열입력 모델

Search Result 307, Processing Time 0.029 seconds

Thermal Modeling for Input Protection Circuit (입력보호회로설계를 위한 열모델링)

  • Choi, Hyek-Hwan;Moon, Kwang-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.100-106
    • /
    • 1996
  • 반도체 소자에 정전기 방전으로 인한 소자내의 온도 상승을 알기 위해 열전달 방정식으로부터 열모델을 유도하였다. 그리고 열파괴 문턱전류를 얻고 시간에 따른 온도 변화를 열모델로부터 해석하였다. 여기서 유도한 열모델은 Wunsch-Bell모델에 지수 항을 추가한 형태이다. 이 모델의 유효성을 증명하기 위해 실험결과와 비교한 결과 매우 잘 일치하였으므로 이 열모델의 함수는 입력보호회로의 반도체소자를 설계하는데 매우 유용하다.

  • PDF

A construction of vowel string dictionary for unlimited word speech recognition (무제한 단어 음성인식을 위한 모음열 사전의 구축)

  • 김동환;윤재선;홍광석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.177-180
    • /
    • 2000
  • 기존의 제한적 단어 인식과는 달리 무제한 단어 음성인식에 있어서는 방대한 용량의 단어 모델을 참조로 인식이 이루어지게 되어, 참조모델과 입력패턴과의 비교를 위한 탐색시간이 너무 길어지게 된다. 본 논문에서 제한하는 방법은 무제한 단어 음성인식 시스템을 구축하기 위해 선행되어야 하는 모음열 사전을 구축하는 것이다. 음성인식시 입력패턴과 참조모델에 속한 모든 단어와의 비교를 수행하지 않고, 입력패턴의 모음열을 인식한 후, 인식된 모음열 단어들만을 참조모델에서 인식 후보로 두어 인식을 수행하게 하여 시간적인 측면에서의 효율성을 기하는 것이다. 결과적으로 본 연구 방법은 무제한 단어 음성인식에서의 실시간 처리라는 점에 주 목적을 두었다.

  • PDF

Neural Network System Implementation Based on MVL-Automata Model (다치오토마타 모델을 이용한 신경망 시스템 구현)

  • 손창식;박진희;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.213-216
    • /
    • 2001
  • 기존의 유한오토마타는 입력 값에 따른 상태 전이가 유한개의 문자열이 입력될 때는 정확하게 인식하나 무한개의 문자열이 입력될 때는 정확하게 인식하지 못한다는 문제점을 가지고 있다. 본 논문에서는 유한오토마타의 상태 전이를 다치오토마타 모델을 이용하여 무한개의 상태로 확장할 수 있는 가능성을 제시하고 이를 신경망 (Neural Network)으로 구현한 다치-신경망 시스템을 제안한다.

  • PDF

A Study of Cepstrum Normalization Using World Model for Robust Speaker Verification (강인한 화자 확인 시스템을 위한 World 모델을 이용한 켑스트럼 정규화 연구)

  • Kim Yu-Jin;Chung Jae-Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.55-58
    • /
    • 2000
  • 본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.

  • PDF

A Study on the Characteristics of FDS Heat Release Rate Predictions for Fire involving Solid Combustible Materials in a Closed Compartment (밀폐된 구획 내 복합소재 고체 가연물의 연소시 열방출률의 FDS 예측 특성)

  • Hong, Ter-Ki;Roh, Beom-Seok;Park, Seul-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.349-356
    • /
    • 2020
  • The heat release rate (HRR) and fire growth rate of fire for the solid combustibles consisting of multi-materials was measured through the ISO 9705 room corner test, and the computational analysis in a closed compartment was performed to simulate a fire using the heat release rate prediction model provided by a Fire Dynamics Simulator (FDS). The method of predicting the heat release rate provided by the FDS was divided into a simple model and a pyrolysis model. Each model was applied and computational analysis was performed under the same conditions. As the solid combustible consisting of multi-materials, a cinema chair composed mostly of PU foam, PP, and steel was selected. The simple model was over-predicted compared to the predicted heat release rate and fire growth rate using the pyrolysis model in a closed compartment.

Korean Dialogue Modeling using MTRNN (MTRNN을 이용한 한국어 대화 모델 생성)

  • Shin, Chang-Uk;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.285-287
    • /
    • 2017
  • 본 논문에서는 Multi-layer sequence-to-sequence 구조를 이용해 한국어 대화 시스템을 개발하였다. sequence-to-sequence는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉층의 embedding에 기반해 출력열을 생성한다. 우리는 sequence-to-sequence로 입력된 발화에 대해 출력 발화를 내어주는 대화 모델을 학습하였고, 그 성능을 측정하였다. RNN에 대해서는 약 80만 발화를, MTRNN에 대해서는 5만 발화를 학습하고 평가하였다. 모델의 결과로 나타난 발화들을 정리하고 분석하였다.

  • PDF

Korean Dialogue Modeling using MTRNN (MTRNN을 이용한 한국어 대화 모델 생성)

  • Shin, Chang-Uk;Cha, Jeong-Won
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.285-287
    • /
    • 2017
  • 본 논문에서는 Multi-layer sequence-to-sequence 구조를 이용해 한국어 대화 시스템을 개발하였다. sequence-to-sequence는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉층의 embedding에 기반해 출력열을 생성한다. 우리는 sequence-to-sequence로 입력된 발화에 대해 출력 발화를 내어주는 대화 모델을 학습하였고, 그 성능을 측정하였다. RNN에 대해서는 약 80만 발화를, MTRNN에 대해서는 5만 발화를 학습하고 평가하였다. 모델의 결과로 나타난 발화들을 정리하고 분석하였다.

  • PDF

Korean Morpheme Restoration and Segmentation based on Transformer (트랜스포머 기반 한국어 형태소 원형복원 및 분리)

  • Hyeong Jin Shin;Jeongyeon Park;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.403-406
    • /
    • 2022
  • 최근 한국어 언어 모델이나 단어 벡터 생성 등에서는 효과적인 토큰을 만들기 위해 품사 태그 없이 형태소 열만을 사용하고 있다. 본 논문에서는 입력 문장에 대해 품사 태그열 생성없이 형태소 열만을 직접 출력하는 효율적인 모델을 제안한다. 특히, 자연어처리에서 적합한 트랜스포머를 활용하기 위해, 입력 음절과 원형 복원된 형태소 조각이 1:1로 대응되는 새로운 형태소 태깅 방법을 제안한다. 세종 품사 부착 말뭉치를 대상으로 평가해 본 결과 공개 배포되어 있는 기존 형태소 분석 모델들보다 형태소 단위 F1 기준으로 약 7%에서 14% 포인트 높은 성능을 보였다.

  • PDF

An Encoding Method of Sequential Patterns using Energy-based models (에너지 기반 모델을 이용한 순차 패턴 부호화 방법)

  • Heo, Min-Oh;Kim, Kwon-Ill;Lee, Sang-Woo;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.330-332
    • /
    • 2012
  • 시계열 데이터 모델링은 시간 간격의 길이에 따라 단기적인 패턴이 주로 반영된다. 특히, 모델에 마코프 가정을 적용하였을 경우 이전 시간의 값에 따라 현재값이 결정된다. 시계열 데이터의 장기적인 변화를 다루기 위해, 특정 길이의 순차적 패턴을 부호화 하고, 이를 상위 모델의 입력으로 사용하는 과정을 통해 추상화를 시도하고자 한다. 실제로 사람의 감각기억은 200~500 밀리초 가량의 짧은 기억 유지기간을 갖는데, 이 기간의 정보를 상위 처리기의 입력 단위로 보고자 하는 것이다. 이에 본 고에서는 에너지기반 모델링 기법을 이용하여 반복적으로 나타나는 순차적 패턴을 부호화 하는 방법을 제안한다. 이 부호화 방법은 시간 순서에 따른 패턴의 유사도를 이용하여 확률적으로 다음 패턴과의 관계를 표현할 수 있으며, 이는 향후 시계열 데이터를 간략하게 표현하여 분석 및 시각화에 도움을 줄 수 있다.

Accurate dam inflow predictions using SWLSTM (정확한 댐유입량 예측을 위한 SWLSTM 개발)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.292-292
    • /
    • 2021
  • 최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.

  • PDF