• Title/Summary/Keyword: 열유체 거동

Search Result 72, Processing Time 0.028 seconds

Behavior of Heavy Metals Studies on the Hydrothermal Alteration Characteristics of Bentonite; Use as Medicinal Mineral (벤토나이트의 열수변질특성에 따른 중금속의 거동 특성 : 광물성 약재로의 활용)

  • Seon-ok Kim;Sookyun Wang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.229-238
    • /
    • 2023
  • Bentonite is a type of rock that has been used as a traditional mineral medicine. It has a variety of pharmacological activities, and is used in traditional Korean medicine to treat jaundice, diarrhea, and hemostasis. In modern medicine, it is used as a raw material and additive for medicines such as antacids, gastrointestinal protective agents, and laxatives. Bentonite produced in Korea was produced through diagenesis or hydrothermal alteration of tertiary volcanic debris distributed in the Pohang and Gyeongju areas. It is mainly used for industrial purposes such as papermaking, paint, civil engineering, casting, and animal feed. Recently, technology is being developed to use it in cosmetics and pharmaceuticals. In this study, the geochemical characteristics of bentonite were identified by analyzing the main components and trace elements of 40 and 21 types of bentonite produced in the Gampo Gyeongju and Yeonil Pohang area. Also it were classifed by formation envrionment of bentonite deposits in the Gampo and Yeonil. As a result of the study, bentonite from the reserch area may be cased by argillic alteraton that alkali elements are removed form basaltic rocks by hydrothermal fluids and AI-CCPI alteration indices wrere also indentified argillic alteraton. It was found that there is a correlation between the behavior characteristics of heavy metal elements (P b, Cr, As) and the hydrothermal alteration of bentonite in the reserch area.

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

A study on theory analysis and CFD simulation for design of high efficiency ceramic exchanger (고효율 세라믹 열교환기 설계를 위한 이론해석 및 CFD시뮬레이션에 관한 연구)

  • Park, Kyung-Seo;Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Doog-Hoon;Jung, Tae-Yong;Park, Sang-Hwan;Kim, Chang-Sam
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.179-186
    • /
    • 2008
  • 현재 대부분의 산업용 열기관은 효율을 높이기 위하여 연소에 사용되는 공기를 예열하는 방법을 사용한다. 하지만, 산업용 열기관에서 평균적으로 발생되는 $1000^{\circ}C$ 이상의 배기가스는 일반 금속 열교환기에는 적합하지 않다. 이에 반해 세라믹 열교환기의 경우 고온에서 견디는 장점이 있다. 본 연구에서는 기본적인 열교환기 설계 이론을 이용하여 설계프로그램을 제작하였다. 또한 세라믹 열교환기 내 열 유체 거동을 CFD 상용코드인 FlUENT 6.2를 이용한 전산해석을 수행하여 설계결과를 비교 검증하였다. 설계 결과에서 휜의 형태 변화에 따라 열전달율과 온도구배는 무시할 수 있을 정도로 작았으나, 압력강하는 크게 변동되는 결과가 도출되었다. 제한된 모듈 크기에서 휜 간거리는 휜의 두께에 비해 약 3배 이상 클 경우가 적당하며, 판(plate)의 두께는 작을수록 압력손실이 적고, 열전달율이 상승하지만 두께가 너무 얇게 된다면 제작상의 어려움이 생긴다. 향후 연구에서는 단순한 구조에서 벗어나 off-set이나 판형구조를 고려하여 설계함으로서 열전달 면적을 넓히거나 난류유동을 발생시켜 열전달율을 높이는 연구를 진행 할 필요가 있다.

  • PDF

Assessment of SCDAP Using the Full-Length High-Temperature FLHT-2 Test (FLHT-2 실험결과를 이용한 SCDAP코드 평가)

  • Park, Choon-Kyung;Park, Jong-Hwa;Yoo, Kun-Jung;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.54-64
    • /
    • 1988
  • This paper assesses the models in the SCDAP code using the results of the FLHT-2 test. Calculations show that the SCDAP correctly predicts Ire temperatures, oxidation front movement, overall hydrogen generation and peak generation rate, internal fuel rod pressure, and cladding rupture due to ballooning. A comparison of the calculated results with measured data shows that two phase level is underpredicted, and that radiation heat transfer and auto-catalytic reaction temperature of zircaloy are overpredicted. These models are recommended to be modified. The analysis also shows that the simulation of the gap in a fuel rod improves the code prediction on core damage progression.

  • PDF

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Gas hold-up variation with pore size of tray in trayed bubble column (Trayed bubble column 반응기에서 tray의 기공크기에 따른 gas hold-up 변화 연구)

  • Yang, Jung Hoon;Yang, Jung-Il;Kim, Hak-Joo;Chun, Dong Hyun;Lee, Ho-Tae;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.133.1-133.1
    • /
    • 2010
  • 슬러리 기포탑 반응기는 열 및 물질 전달의 용이성, 낮은 운전비용 및 장치의 간단성의 장점을 가지고 있어서 Fischer-Tropsch 반응, bio-reaction 등에 많이 응용되고 있다. 그러나 기포탑 반응기 내의 물질 거동은 매우 복잡하기 때문에 많은 연구가 이루어지고 있음에도 불구하고 그 현상에 대한 명확한 이해는 어려운 상황이다. 특히 기포탑반응기 내에 기체의 포집율(gas hold-up)을 증가시키는 것을 목적으로 하는 연구들이 활발히 진행되고 있다. 본 연구에서는 trayed bubble column 반응기에서 tray의 기공크기에 따른 기체 포집율의 변화를 관찰하였다. 실험에 사용된 반응기는 내경이 0.15 m이고 높이 2.0 m의 아크릴 반응기를 이용하였다. 사용된 연속상은 수돗물을 사용하였고 분산상 기체로는 압축공기를 이용하였다. Tray의 기공크기는 1.1 mm부터 14.0 mm까지 변화시키면서 높이별 기체 포집율의 변화를 관찰하였다. 기체 포집율의 변화를 균일흐름 영역과 불균일 흐름 영역에서 그 양상이 다르게 나타났다. 즉 균일계 영역에서는 기공의 크기가 1.1 mm부터 2.9 mm까지 증가시면 기체포집율이 감소하는 반면 2.9 mm 이상에서는 증가하는 것으로 관찰되었다. 반면 불균일 흐름 영역에서는 전반적으로 기공의 크기가 작아질수록 기체포집율이 증가하였다. 또한 각각의 흐흠 영역에서의 기체포집율 증가정도는 확연한 차이를 보이는 것을 알 수 있었다. 이것은 흐름영역의 유체거동에 따라서 기포와 tray 기공사이의 상호작용 메커니즘이 달라지기 때문인 것으로 보인다.

  • PDF

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

Analysis on the Regenerator Characteristics for a Vuilleumier Heat Pump (Vuilleumier열펌프용 재생기 특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1572-1583
    • /
    • 1993
  • This paper deals with the analysis method of regenerator characteristics for designing a vuilleumier heat pump. First, models for evaluating the reheat and the flow losses are established by the comparative study between already proposed ones. Calculations based on the second-order method are performed for the well-known schulz heat pump. Results show that operating conditions as well as design parameters significantly affect the regenerator performances. The effects of operating conditions on the reheat and the flow losses appear to be similar in trends in both the hot-warm and the cold-warm regenerators. However, the losses in the one regenerator vary oppositely to those in the other with specific design parameters such as the phase angle and the swept volume ratio being changed. Also, it is confirmed that there is an optimum aspect ratio(D/L) which minimizes total loss for each regenerator.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.