• Title/Summary/Keyword: 열유속법

Search Result 74, Processing Time 0.032 seconds

A Study on the Estimation of One-dimensional Beat Fluxes on the Slab in Reheating Furnace by Using Inverse Analysis (역해석을 이용한 가열로 내 소재의 1차원 열유속 추정에 관한 연구)

  • Kang, Deok-Hong;Kwag, Dong-Seong;Kim, Woo-Seung;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This study deals with the use of the conjugate gradient method for the simultaneous estimation of two unknown boundary heat fluxes on the slab in reheating furnace. Temperature measurements by the experiment are used in the inverse analysis. The heat flux estimations for three different cases of measurement locations in the slab are performed: non-skid, skid, and shift-skid zones. The estimated heat fluxes for three cases indicated the three regions having local peak values of heat fluxes. The estimated temperatures at measurement locations were in good agreements with the measured temperatures within 5% relative error.

Analysis of the thermal fluid flow between the gas torch and the steel plate for the application of the line heating (선상 가열을 위한 가스 토치와 강판 사이의 열유동 해석)

  • Jong-Hun Woo;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.52-60
    • /
    • 2002
  • Line heating is a forming process which makes the curved surface with the residual strain created by applying heat source of high temperature to steel plate. in order to control the residual strain, it is necessary to understand not only conductive heat transfer between heat source and steel plate, but also temperature distribution of steel plate. In this paper we attempted to analyze is temperature distribution of steel plate by simplifying a line heating process to collision-effusive flux of high temperature and high velocity, and conductive heat transfer phenomenon. To analyze this, combustion in the torch is simplified to collision effusive phenomenon before analyzing turbulent heat flux. The distribution of temperature field between the torch and steel plate is computed through turbulent heat flux analysis, and the convective heat transfer coefficient between effusive flux and steel plate is calculated using approximate empirical Nusselt formula. The velocity of heat flux into steel plate is computed using the temperature distribution and convective heat transfer coefficient, and temperature field in the steel plate is obtained through conductive heat transfer analysis in which the traction is induced by velocity of heat flux. In this study, Finite Element Method is used to accomplish turbulent heat flux analysis and conductive heat transfer analysis. FEA results are compared with empirical data to verify results.

Numerical simulations of radiative and convective heat transfer in the cylinder of a diesel engine (디이젤엔진내의 복사열전달 효과에 관한 수치해석적 연구)

  • 임승욱;김동우;이준식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.54-64
    • /
    • 1992
  • During combustion process in a diesel engine radiation heat transfer is the same order of magnitude as the convection heat transfer. An approximation of heat and momentum source distributions is applied at a level consistent with those used in modelling the soot distribution and the turbulence instead of modelling the fuel spray and the chemical kinetics. This paper illustrates a use of the third order spherical harmonics approximation to the radiative transfer equation and delta-Eddington approximation to the scattering phase function for droplets in the flow. Results are obtained numerically by a time marching finite difference scheme. This study aims to compare heat transfer with convection heat transfer and to investigate the importance of scattering by fuel droplets and of accounting for spatial variations in the extinction coefficient on the radiative heat flux distributions at the walls of a disc shaped diesel engine.

  • PDF

Sapphire single crystal growth by the modified heat exchanger method : I. Preparation with the square cross-section (수정된 열교환법에 의한 sapphire 단결정의 성장 : I. 사각단면 단결정의 제조)

  • 이민상;김성균;김동익;진영철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In this study, we have investigated the preparation conditions of 45$\times$45$\times$20(mm) square cross-section sapphire single crystal by the modified heat exchanger method using water as a coolant. Melting and solidification processes were optimized by the systematic change of the chamber pressure with the heater temperature. As a results, solidification temperature was between 1960 and $1970^{\circ}C$. The crucible was formed by handling. Therefore its shape should had the 'spiral type' ear at edge of its side. Heat exchanger affected to the temperature distribution and gradient of molten alumina. Heat flux and unmelted seed were controlled by volume of heat exchanger. Voids were controlled by the cooling rate of the heater below $0.2^{\circ}C$/min.

  • PDF

Comparative Study on the Thermal Insulation of Membrane LNG CCS by Heat Transfer Analysis (열전달 해석을 이용한 멤브레인형 LNG 화물창의 단열구조 성능비교)

  • Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • This study discusses the thermal insulation capacity of variant of NO96 LNG (liquefied natural gas) cargo containment insulation system. Changing the insulation materials and the insulation layers of conventional GTT NO96 containment system, The thermal resistance and BOR(boil off rate) caused by the heat transfer between cryogenic and environmental temperature is discussed. Therefore, thermal analysis of LNG CCS(cargo containment system) is carried out to determine the insulation capabilities. Also, BOR is evaluated in terms of the total amount of heat invaded into CCS(cargo containment system). Variant of NO96 CCS such as NO96, NO96GW and NO96L3 membrane type during laden voyage is selected for the comparative study. Finite element model for heat transfer analysis is conducted by employing the equivalent thermal resistance model to simplify the complex insulation layers. Finally the results for each variant model are relatively compared and discussed to minimize the BOR.

PlV Measurement of Channel Cavity Flow with Bottom Heat surface of Constant Heat Flux (일정 열유속의 하부 가열면을 갖는 채널캐비티 내부유동의 PIV 계측)

  • 조대환;김진구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-442
    • /
    • 1997
  • An experimental study was carried out in a channel cavity with square heat surface by visual¬ization equipment with Mach - Zehnder interferometer and laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two¬frame grey-level cross correlation algorithm. Heat source was uniform heat flux(o.4W/cm$^2$, , O.8W/cm$^2$, 1.2W/cm$^2$). Obtained result showed various flow patterns such as kinetic energy distribution. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach ~ Zehnder are also compared in terms of constant heat flux.

  • PDF

Dynamic thermal properties of particulate foods in a continous flow cooking system (연속살균장치에서의 소고기 정육면체의 열전달특성 측정)

  • 홍지향;한영조;고학균
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.12a
    • /
    • pp.523-530
    • /
    • 1999
  • 연속살균장치는 $130^{\circ}C$에서 $140^{\circ}C$의 초고온에서 연속적으로 식품을 열처리 하는 공정으로 재래 배치식 공정에 비하여 순간적인 짧은 시간이 소요되는 경제적인 공정이나, 액상과 고상으로 구성된 저산도 식품은 고상입자의 대류열전달 계수와 장치내 체류시간이 정확히 구명되지 않아서 연속살균기술이 성공적으로 적용되지 못하고 있다. 본 연구에서 연속살균장치에서의 액상식품과 고상식품사이의 대류열전달 계수를 예측하기 위하여 연속살균장치의 Hold tube에서 정육면체 모델 식품내부의 온도를 측정할 수 있는 장치를 개발하였다. 연속살균장치의 홀드튜브에서 정육면체 모델 식품의 온도변화를 예측할 수 있는 유한차분법을 이용한 시뮬레이션 모델을 개발하고 소고기를 대상으로 이 시뮬레이션 모델의 입력변수인 비열, 열전도도를 실험적으로 측정하여 사용하였다. 0.0에서 15.0 centipoise의 점도를 가지는 모델 액상식품의 15.6에서 45.2liter/min 의 유속에 대하여 액상과 소고기 정육면체의 대류열전달계수는 792에서 2107W/$m^2$K으로 예측되었다.

  • PDF

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.