• Title/Summary/Keyword: 열원과의 거리

Search Result 27, Processing Time 0.029 seconds

Method for Measuring Weld Temperature Using an Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 용접부의 온도 측정 방법)

  • Ro, Chan-Seung;Kim, Kyeong-Suk;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2014
  • In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

Internal Defect Position Analysis of a Multi-Layer Chip Using Lock-in Infrared Microscopy (위상잠금 적외선 현미경 관찰법을 이용한 다층구조 칩의 내부결함 위치 분석)

  • Kim, Seon-Jin;Lee, Kye-Sung;Hur, Hwan;Lee, Haksun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Kim, Ghiseok;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2015
  • An ultra-precise infrared microscope consisting of a high-resolution infrared objective lens and infrared sensors is utilized successfully to obtain location information on the plane and depth of local heat sources causing defects in a semiconductor device. In this study, multi-layer semiconductor chips are analyzed for the positional information of heat sources by using a lock-in infrared microscope. Optimal conditions such as focal position, integration time, current and lock-in frequency for measuring the accurate depth of the heat sources are studied by lock-in thermography. The location indicated by the results of the depth estimate, according to the change in distance between the infrared objective lens and the specimen is analyzed under these optimal conditions.

Thermal Conductivity Estimation of Soils Using Coil Shaped Ground Heat Exchanger (코일형 지중열교환기를 이용한 지반의 열전도도 산정)

  • Yoon, Seok;Lee, Seung-Rae;Park, Hyunku;Park, Skhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.177-183
    • /
    • 2012
  • The use of energy pile foundation has been increased for economic utilization of geothermal energy. In particular, a coil-shaped ground heat exchanger (GHE) is preferred than conventional U-shaped heat exchanger to ensure better efficiency of heat exchange rate. This paper presents experimental results by changing different pitch spaces of spiral coils. Joomunjin sand was filled in a steel box of which the size was $5m{\times}1m{\times}1m$. Thermal response tests (TRTs) were conducted to measure the ground thermal conductivity with temperatures of circulating water using line source model and ring coil model. Experimental results and analytical solutions were compared to validate the applicability of these models. Ring coil model showed more accurate similar results with experimental data rather than line source model and cylindrical source model.

An Analytical Model for Predicting Heat Transport due to a Point Source in Coastal Water under a Spring-Neap Modulation of Tidal Currents (조류의 대.소조 변동이 존재하는 연안역에서의 점열원에 의한 열오염의 이동 예측을 위한 해석해 모형)

  • 이호진;김종학
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.92-102
    • /
    • 2004
  • In this paper, an analytical solution of calculating the excess temperature field due to a point heat source is presented in the presence of spring-neap modulation of convective alongshore flow. The basic form of the solution is identical to that given by Jung et al. (2003) but the convective term in the exponential kernel function is extended and a spring-neap variation in the horizontal eddy diffusivity is newly introduced. A set of calculations have been performed to examine the sensitivity of the heat build-up to the change in current fields and turbulent dispersion. Results indicate that the excess temperature field is confined within the tidal excursion distance, while the excess temperature field beyond the distance is mainly controlled by the horizontal diffusion. The heat build-up within the distance is considerably affected by the spring-neap variation in the horizontal eddy diffusivity; the relatively high excess temperature more than 1$^{\circ}C$ is extended further when the eddy diffusivity has spring-neap modulation.

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.

A Study on Heat Transfer Analysis around the Square Heat Source of Interior Solid by Using Finite Element Method (유한요소법에 의한 고체내부의 사각열원 주위 열전도 특성연구)

  • Jang, Jae-Eun;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 1982
  • In this paper the result of heat transfer analysis around the square heat source of interior solid by using the F. E. M is reported. Calculation for temperature distribution and each element was used by F. E. M. the solid is sub-divided into system of equal size triangular shape. These values of temperature distribution will valuable for design of jet engine and steam generator and the results gained are as follow; 1. Calculation by F. E. M is identified with the experiment. 2. Temperature distribution on the horizontal surface is $\theta$=0.698 in model 4 and the other hand $\theta$=0.401 in model 6 for X=16cm. In intermediates surface between heat source and bottom surface, the influence of L is more greater than that of height in the temperature difference. 3. Temperature distribution on the vertical surface for model 2 is resulted strong influence by K. In the case of Y=4cm is identified with $\theta$=0.0790 for K=7 and also $\theta$=0.0036 for K=0.3. In the difference of temperature distribution.

  • PDF

Analytical Study of the Determination of Distance between the Laser Heat Source and Tool for Laser-Assisted Machining (레이저보조가공에서 열원과 공구 사이의 거리선정을 위한 해석적 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.699-704
    • /
    • 2015
  • Laser-assisted machining has shown its potential to significantly improve product quality and reduce manufacturing costs; additionally, laser-assisted turning (LAT) and laser-assisted milling (LAM) have been studied by numerous researchers. A research study on the determination of the distance between the laser heat source and the tool for laser-assisted machining, however, has not yet been attempted; we conducted such an analysis by using a finite-element method and heat-transfer equation. The results of this analysis can be used as a reference for the determination of the distance between the laser heat source and the tool for laser-assisted machining.

Study on the Thermal Characteristics of the Fire Fighter's Waterproof Clothing Exposed to the Radiation Heat (복사열에 노출된 소방용 방수복의 열적 특성에 관한 연구)

  • 방창훈
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • This experimental study shows the thermal characteristics of the fire fighter's waterproof clothing exposed to the radiation heat. From the test results, the surface temperature of the fire fighter's waterproof clothing exposed to the radiation with the passage of time sharply increased as the exposed-distance became closer. Also as the radiant heat flux increased, the surface temperature is higher and the time reaching steady state is sharply shorter. As the exposed-distance become more distant, the surface temperature of the fire fighter's waterproof clothing decreased and the difference of temperature between the front side and the back side of the clothing decreased as well. Besides, the radiant heat flux increased, the safety exposed-distance increased. Therefore it is necessary that fire fighter have to work keeping a fixed safe distance from the radiant heat source.

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.