• Title/Summary/Keyword: 열영향층

Search Result 460, Processing Time 0.026 seconds

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.

Seasonal Variations of Particle Fluxes in the Northeastern Pacific (북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동)

  • Kim, Hyung-Jeek;Kim, Dong-Seon;Hyeong, Ki-Seong;Kim, Kyeong-Hong;Son, Ju-Won;Hwang, Sang-Chu;Chi, Sang-Bum;Kim, Ki-Hyun;Khim, Boo-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • Particle fluxes were measured with a time-series sediment trap from July 2003 to June 2005 at the St. KOMO(KOMO; Korea Deep-Sea Environmental Study Long-Term Monitoring Station, $10^{\circ}30'N,\;131^{\circ}20'W$) in the northeastern Pacific. Total mass fluxes at a depth of 4,960 m showed distinct seasonal variations with high values in the winter(December-February) and spring(March-May) and low values in the summer(June-August) and fall(September-November). Biogenic origin fluxes also displayed distinct seasonal variations similar to total mass fluxes. Particularly, calcium carbonate fluxes in winter and spring were more than two times greater than those in summer and fall. The prominent seasonal variations of total mass and biogenic fluxes were closely related with the seasonal changes of primary production in the surface waters; in winter and spring, primary production increased due to the enhanced supply of nutrients below the surface mixed layer by strong wind and less stratification, whereas it decreased as a result of the less supply of nutrient by reduced wind speed and strong stratification in summer and fall. The seasonal variations of total mass and biogenic fluxes in this study were higher than the differences of total mass and biogenic fluxes caused by the environmental changes such as El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ events in the previous studies. In order to understand the effects of El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ on the particle flux, therefore, the seasonal variation of particle flux in the northeastern equatorial Pacific needs to be well defined.

Pretreatment prognostic Factors in Early Stage Caricinoma of the Uterine Cervix (초기 자궁 경부암에서 치료전 예후 인자)

  • Kim, Mi-Sook;Hua, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.59-67
    • /
    • 1992
  • From March 1979 through December 1986, 124 patients with early stage carcinoma of the uterine cervix received curative radiation therapy. According to FIGO classification, 35 patients were stage IB and 89 were stge II A. In stage IB, five year locoregional control, five year disease free survival, and five year overall survival was $79.0\%$, $76.4\%$ and $81.8\%$, respectively. In stage II A, five year locoregional control, five year disease free survival, and five year overall survival were $78.0\%$, $66.8\%$, and $72.1\%$, respectively. To identify prognostic factors, pretreatment parameters including age, ECOG performance status, number of pregnancies, history of diabetes mellitus and hypertension, histology, size and shape of primary tumor, CT findings and blood parameters were retrospectively analyzed in terms of locoregional control, disease free survival and overall survival using univariate analysis and multivariate analysis. In univariate analysis, tumor size on physicai examination and rectal invasion on CT significantly affected locoregional control, disease free survival and overall survival. Parametrial involvement on CT was a significant prognostic factor on locoregional control and disease free survival. Hemoglobin level affected disease free survival and overall survival. Histology and age were significant prognostic factors on locoregional control. In multivariate analysis excluding CT finding, tumor size on physical examination was a significant factor in terms of locoregioal control and overall survival. Hemoglobin level was significant in terms of disease free survival. In multivariate analysis including CT, histology was a prognostic factor on locoregional control and disease free survival. Hemoglobin level and rectal invasion on CT were significant factors on locoregional control.

  • PDF

Cooling and Thermal Histories of Cretaceous-Paleogene Granites from Different Fault-bounded Blocks, SE Korean Peninsula: Fission-track Thermochronological Evidences (한반도 동남부의 주단층대에 의해 구분된 지질블록별 백악기-고제3기 화강암의 차별적 냉각-지열 이력: 피션트랙 열연대학적 증거)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.335-365
    • /
    • 2012
  • Fission-track (FT) thermochronological records from SE Korean Cretaceous-Paleogene granitic plutons in different fault-bounded blocks reveal contrasting cooling and later thermal histories. Overall cooling patterns are represented by a monotonous (J-shaped) curve in most plutons except some Cretaceous granites retaining a complicated (N-shaped) path due to post-reset re-cooling. Discriminative cooling rates over different temperature ranges can be explained for individual plutons with respect to relative pluton sizes, differences in initial heat loss depending on country rocks, and the presence and proximity of later igneous activity. Even within a single batholith, cooling times for different isotherms were roughly contemporaneous with respect to positions. Insignificant deviations in cooling ages from two different plutons in succession across the Yangsan fault may suggest their contemporaneity before major horizontal fault movement. The extent of later thermal rise recorded locally along the Yangsan and Dongnae fault zones were reached the Apatite Partial Stability Zone ($70-125^{\circ}C$), but did not exceed $200^{\circ}C$. Thermal alteration from fractured zones in the Yangsan-Ulsan fault junction may suggest a thermal reset above $290^{\circ}C$ resulting a complete reset in FT sphene age (31 Ma), caused by a tectonic subsidence in Early Oligocene. A consistency in FT zircon/apatite ages (24 Ma) may imply a sudden rapid cooling over $200-105^{\circ}C$, plausibly related to the abrupt tectonic uplift of the Pohang-Gampo Block including the fault junction in Late Oligocene. A remarkable trend of lower cooling ages for $300-200-100^{\circ}C$ isotherms (i.e., 19% for FT sphene and K-Ar biotite; 20% for FT zircon; 27% for FT apatite) from the east of the Ulsan fault (Pohang-Gampo Block) comparing to the west of the fault may be attributed to retarded cooling times from the Paleogene granites and also reflected by their partially-reduced apatite ages due to later thermal effects.

Experimental Study on Autothermal Reformation of Methanol with Various Oxygen to Methanol Ratios for Fuel Cell Applications (연료전지용 메탄올 자열 개질기의 산소-메탄올 비율에 따른 성능 실험)

  • Hwang, Ha-Na;Shin, Gi-Soo;Jang, Sang-Hoon;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • The use of Hydrogen as a fuel is receiving considerable attention and as a result, research on novel methods of hydrogen production is necessary so that the hydrogen demands in the future can be satisfied. This study presents experimental data on methanol Autothermal Reformation that quantifies the relationship between the oxygen-to-methanol ratio ($O_2/CH_3OH$) and reformer efficiency. For each catalyst configuration, the $O_2/CH_3OH$ was varied from 0.1 to 0.4, with an increment of 0.05, to investigate the effects of $O_2/CH_3OH$ on the reactor performance, including temperature profile, conversion, and efficiency. $O_2/CH_3OH$ was increased from 0.15 to 0.20, and the catalyst bed temperature increased by $235^{\circ}C$ to approximately $550^{\circ}C$. The catalyst bed temperature increased with increasing $O_2/CH_3OH$ as the reaction shifted from endothermic to exothermic reaction and as a result, excess heat, which raised the reactor temperature, was generated. The reactor performance was shown to be highly dependent on $O_2/CH_3OH$. The optimum $O_2/CH_3OH$ = 0.30 found in the experimental tests is 30% higher than the theoretical optimum of 0.23. This is attributed to a combination of factors such as the concentrations of the $O_2$ and $CH_3OH$ gas, reaction rate, catalyst effects, heat loss from the reactor, and the difference between the actual amounts of reaction products formed and the theoretical amounts of the reaction products.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

Oxide Films Formed on Hot-Dip Aluminized Steel by Plasma Electrolytic Oxidation and Their Films Growth Stages (플라즈마 전해 산화법에 의해 용융알루미늄도금 강판 상 형성한 산화층과 그 성장 과정)

  • Choe, In-Hye;Kim, Chang-Min;Park, Jun-Mu;Park, Jae-Hyeok;Hwang, Seong-Hwa;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.165-165
    • /
    • 2017
  • 지난 수 십 년 동안, 전 세계적으로 자원의 소비가 급격히 증가하게 되면서 최근 자원 고갈은 물론 환경오염이 커다란 이슈로 문제가 되고 있다. 이에 따라 재료 관련 분야에 있어서는 보다 효율적이고 친환경적인 방법으로 자원을 활용해야 된다는 필요성이 대두되었고 이와 같은 관점에서 목적하는 성분이 우수하고 환경 친화적인 표면처리 재료 개발연구가 활발하게 진행되고 있는 실정이다. 그 중 플라즈마 전해 산화(Plasma Electrolytic Oxidation, PEO)는 알루미늄, 마그네슘 등의 경금속의 경도를 향상시키고 높은 내마모성, 내식성을 갖게 하는 표면처리로써 그 관심이 증가하고 있다. 이 플라즈마 전해 산화는 일반적으로 공정비용 대비 효과적이고 환경 친화적이며 코팅 성능 면에서 우수하다고 알려져 있다. 이러한 고유한 특성으로 인해 플라즈마 전해 산화 코팅은 최근 몇 년 동안 기계, 자동차, 우주항공, 의학 및 전기 산업 등의 분야에서 그 적용이 점차 증가하고 있는 상황이다. 한편, 플라즈마 전해 산화 코팅을 하는 모재들의 경우 부동태 산화피막을 용이하게 형성할 수 있는 특성의 모재에 한정되고 있어서 그 응용확대에 한계가 있는 것이 사실이다. 따라서 본 연구에서는 플라즈마 전해 산화법을 사용하여 용융알루미늄도금 강판 상에 산화피막 형성을 시도하였다. 전원공급 장치의 양극은 전해질 속에 잠겨있는 작동전극에 연결하고 음극은 대전극 역할을 하는 스테인레스강 전해질 용기에 연결되었다. 전해질은 Sodium Aluminate 및 기타 첨가제를 함유한 것을 사용하였고 온도는 열교환기를 사용하여 $30^{\circ}C$ 이하로 유지되었다. 또한 여기서 전류밀도는 $5{\sim}10A/dm^2$, 실험 주파수는 700Hz, Duty cycle은 30 및 90%의 각 조건에서 공정처리 시간을 각각 30분 및 60분 동안 진행하였다. 이와 같은 조건에서 형성한 막들에 대해서는 주사형전자현미경(SEM)을 이용하여 코팅 막의 표면 및 단면의 모폴로지를 관찰하였음은 물론 EDS 및 XRD 측정을 통하여 원소조성분포 및 결정구조를 각각 분석하였다. 또한 이 코팅 막들에 대한 내식성은 5% 염수분무 환경 중 노출시험(Salt spray test), 3% NaCl 용액에서의 침지 시험 및 전기화학적 동전위 양극분극(Potentiodynamic Polarization) 시험을 진행하여 평가하였다. 이상의 실험결과에 의하면, 제작조건별 플라즈마 전해 산화 코팅 막의 모폴로지 및 결정구조가 상이하게 나타나는 것을 알 수 있었다. 코팅 막의 모폴로지 관찰 결과, 공정 시간에 비례하여 표면에 존재하는 원형 기공의 수는 감소하였으나 그 크기가 커지고 크레이터의 직경 또한 커진 것이 확인되었다. 이 기공은 마이크로 방전에 의해 형성된다고 알려져 있는데 공정 시간이 증가함에 따라 코팅 두께가 점차 증가하여 마이크로 방전의 빈도수가 줄어들고 그 강도는 증가하게 되어 기공 크기가 증가한 것으로 사료된다. 또한 공정시간이 긴 시편에서 표면에 크랙이 다수 존재하는 것으로 확인되었다. 이것은 방전에 의해 고온이 된 소재가 차가운 전해질과 만나게 되어 생긴 큰 온도구배로 인해 강한 열응력이 발생하여 균열을 초래한 것으로 보인다. 조성원소 분석 결과 원형 기공 주변의 크레이터 영역에는 알루미늄이 풍부하였으며 그 주변에 결절상을 갖는 구조에서는 전해질 성분의 원소가 포함되어 있는 것이 확인되었다. 이러한 코팅 막의 표면 특성은 내식성에 영향을 주게 된 원인으로 사료된다. 동전위 분극측정 결과에 의하면 플라즈마 전해 산화 공정 시간이 길어질수록 부식전류밀도가 증가하였다. 이것은 공정시간이 길어짐에 따라 강한 방전이 발생하여 기공의 크기가 증가하고 크랙이 발생하게 되면서 내식성이 저하된 것으로 판단된다. 종합적으로 재료특성 분석 및 내식성 평가를 분석한 결과, 플라즈마 전해 산화의 공정 시간이 너무 길게 되면 오히려 내식성은 저하되는 것이 확인되었다. 이상의 연구를 통하여 고내식 특성을 갖는 플라즈마 전해 산화 막의 유효성을 확인하였으며 용융알루미늄강판 상에 실시한 플라즈마 전해 산화 처리에 대한 기초적인 응용 지침을 제시할 수 있을 것으로 사료된다.

  • PDF

Drying of Rough Rice by Solar Collectors (태양(太陽) 열(熱 )집열기(集熱機)를 이용(利用)한 벼의 건조(乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.264-272
    • /
    • 1979
  • The flat-plate and tubular soar collectors were designed and constructed for drying the rough rice, and the performance of the collectors and drying effect were investigated when rough rice was packed in grain bin connected to collectors. Average-monthly radiation on a horizontal surface based on bright sunshine in Daejeon area during 1978 was the highest as $16,814\;KJ/m^2{\cdot}day$ in May and the lowest as $4,254\;KJ/m^2{\cdot}day$ in December, and significane was not recognized between the calculated and recorded values. The thermal effciency of collectors were increased as radiation increased during drying period and the average thermal effciency of flat-plate and tubular collectors in 11 to 12 o'clock a.m were 28.12 and 16.75%, respectively. The average inlet temperature of grain bin at 12 o'clock was shown as 20.02 at control 40.5 at grain bin connected to tubular collector and $55.1^{\circ}C$ at grain bin connected to flat-plate collector. In 25 cm rough rice depth in grain bin, tim taken for drying from initial moisture content at 27.4 to decrease upto 17.0% (14.5 % on wet basis) were 32 in control, 18 in grain bin connected to tubular collector and 11 hrs to flat-plate collector, and grain depth influenced drying rate remarkably. In the view point of drying characteristics, drying pattern showed initially falling-rate to constant-rate period finally.

  • PDF

Analysis of Groundwater Flow Characterization in Fractured Aquifer System (파쇄대 응회암 대수층의 지하수 유동 특성화 기법)

  • Kim Yong-Je;Kim Tae-Hee;Kim Kue-Young;Hwang Se-Ho;Chae Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.33-44
    • /
    • 2005
  • On the basis of a stepwise and careful integration of various field and laboratory methods the analysis of groundwater flow characterization was performed with five boreholes (BH-1, -2, -3, -4, -5) on a pilot site of Natural Forest Park in Guemsan-gun, Chungcheongbook-do, Korea. The regional lineaments of NW-SE are primarily developed on the area, which results in the development of many fractures of NW-SE direction around boreholes made in the test site for the study. A series of surface geological survey, core logging, geophysical logging, tomography, tracer tests, and heat-pulse flowmeter logging were carried out to determine fracture characteristics and fracture connectivity between the boreholes. In the result of fracture connectivity analysis BH-1 the injection well has a poor connectivity with BH-2 and BH-3, whereas a good with BH-4 and BH-5. In order to analyse the hydraulic connectivity between BH-1 and BH-5, in particular, a conspicuous groundwater outflux in the depth of 12 m and influx in the depth of 65 m and 70 m, but partly in/outflux occurred in other depths in BH-5 were observed as pumping from BH-1. On the other hand, when pumping from BH-5 the strong outflux in the depths of 17 m and 70 m was occurred. The spatial connectivity between the boreholes was examined in the depth of 15 m, 67 m, and 71 m in BH-1 as well as in the depth of 15 m, 17 m, 22 m, 72 m, and 83 m in BH-5.

THE EFFECTS OF THERMAL STIMULI TO THE FILLED TOOTH STRUCTURE (온도자극이 충전된 치질에 미치는 영향)

  • Baik, Byeong-Ju;Roh, Yong-Kwan;Lee, Young-Su;Yang, Jeong-Suk;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.339-349
    • /
    • 1999
  • The dental structure substituted by restorative materials may produce discomfort resulting from hot or cold stimuli. To investigate the effects of this stimuli on the human teeth, thermal analysis was carried out by calculation of general heat conduction equation in a modeled tooth using numerical method. The method has been applied to axisymmetric and two-dimensional model, analyzing the effects of constant temperature $4^{\circ}C\;and\;60^{\circ}C$. That thermal shock was provided for 2 seconds and 4 seconds, respectively and recovered to normal condition of $20^{\circ}C$ until 10 seconds. The thermal behavior of tooth covered with a crown of gold or stainless steel was compared with that of tooth without crown. At the same time, the effects of restorative materials(amalgam, gold and zinc oxide-eugenol(ZOE)) on the temperature of PDJ(pulpo-dentinal junction) has been studied. The geometry used for thermal analysis so far has been limited to two-dimensional as well as axisymmetric tooth models. But the general restorative tooth forms a cross shaped cavity which is no longer two-dimensional and axisymmetric. Therefore, in this study, the three-dimensional model was developed to investigate the effect of shape and size of cavity. This three-dimensional model might be used for further research to investigate the effects of restorative materials and cavity design on the thermal behavior of the real shaped tooth. The results were as follows; 1. When cold temperature of $4^{\circ}C$ was applied to the surface of the restored teeth with amalgam for 2 seconds and recovered to ambient temperature of $20^{\circ}C$, the PDJ temperature decreased rapidly to $29^{\circ}C$ until 3 seconds and reached to $25^{\circ}C$ after 9 seconds. This temperature decreased rather slowly with stainless steel crown, but kept similar temperature within $1^{\circ}C$ differences. Using the gold as a restorative material, the PDJ temperature decreased very fast due to the high thermal conductivity and reached near to $25^{\circ}C$ but the temperature after 9 seconds was similar to that in the teeth without crown. The effects of coldness could be attenuated with the ZOE situated under the cavity. The low thermal conductivity caused a delay in temperature decrease and keeps $4^{\circ}C$ higher than the temperature of other conditions after 9 seconds. 2. The elapse time of cold stimuli was increased also until 4 seconds and recovered to $20^{\circ}C$ after 4 seconds to 9 seconds. The temperature after 9 seconds was about $2-3^{\circ}C$ lower than the temperature of 2 seconds stimuli, but in case of gold restoration, the high thermal conductivity of gold caused the minimum temperature of $21^{\circ}C$ after 5 seconds and got warm to $23^{\circ}C$ after 9 seconds. 3. The effects of hot stimuli was also investigated with the temperature of $60^{\circ}C$. For 2 seconds stimuli, the temperature increased to $40^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 3 seconds of stimuli and decreased to $30^{\circ}C$ after 9 seconds in the teeth without crown. This temperature was sensitive to surface temperature in the teeth with gold restoration. It increased rapidly to $41^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 2 seconds and decreased to $28^{\circ}C$ after 9 seconds, which showed $13^{\circ}C$ temperature variations for 9 seconds upon the surface temperature. This temperature variations were only in the range of $5^{\circ}C$ by using ZOE in the bottom of cavity and showed maximum temperature of $37^{\circ}C$ after 3 seconds of stimuli.

  • PDF