• Title/Summary/Keyword: 열에너지저장

Search Result 52, Processing Time 0.017 seconds

Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water (지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례)

  • Park, Doh-Yun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Thermal energy storage is defined as the temporary storage of thermal energy at high or low temperatures for later use in need. The energy storage can reduce the time or rate mismatch between energy supply and demand, and thus it plays an important role in conserving energy and improving the efficiency of energy utilization, especially for renewable energy sources which provide energy intermittently. Underground thermal energy storage (UTES) can have additional advantages in energy efficiency thanks to low thermal conductivity and high heat capacity of surrounding rock mass. In this paper, we introduced the technologies of underground thermal energy storage and rock caverns for hot water storage in Sweden.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns (열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인)

  • Park, Dohyun;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • Thermal energy storage (TES) is a technology that stores surplus thermal energy at high or low temperatures for later use when the customer needs it, not just when it is available. TES systems can help balance energy demand and supply and thus improve the overall efficiency of energy systems. Furthermore, the conversion and storage of intermittent renewable resources in the form of thermal energy can help increase the share of renewable resources in the energy mix which refers to the distribution of energy consumption from different sources, and to achieve this, it is essential to combine renewable resources with TES systems. Underground TES using rock caverns, known as cavern thermal energy storage (CTES), is a viable option for large-scale, long-term TES utilization although its applications are limited because of the high construction costs. Furthermore, the heat loss in CTES can significantly be reduced due to the heating of the surrounding rock occurred during long-term TES, which is a distinctive advantage over aboveground TES, in which the heat loss to the surroundings is significantly influenced by climate conditions. In this paper, we introduced important factors that should be considered in the shape and multiple layout design of TES caverns, and proposed guidelines for storage space design.

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Methods to Characterize the Thermal Stratification in Thermal Energy Storages (열에너지 저장소 내 열성층화를 평가하기 위한 기법)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES) (열에너지 저장을 위한 지하 암반공동 내 열성층화 거동에 대한 수치해석적 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.188-195
    • /
    • 2012
  • Using a computational fluid dynamics (CFD) code, FLUENT, the present study investigated the thermal stratification behavior of Lyckebo storage in Sweden, which is the very first large-scale rock cavern for underground thermal energy storage. Heat transfer analysis was carried out for numerical cases with different temperatures of the surrounding rock mass in order to examine the effect of rock mass heating due to periodic storage and production of thermal energy on thermal stratification and heat loss. The change of thermal stratification with respect to time was quantitatively examined based on an index of the degree of stratification. The results of numerical simulation showed that in the early operational stage where the surrounding rock mass was less heated, the stratification of stored thermal energy was rapidly degraded over time, but the degradation and heat loss tended to reduce as the surrounding rock mass was heated during a long period of operation.

건물용 열네트워크에서의 축열시스템

  • Lee, Dong-Won
    • Journal of the KSME
    • /
    • v.56 no.8
    • /
    • pp.42-46
    • /
    • 2016
  • 이 글에서는 건물용 열네트워크에서 효율적으로 사용될 수 있는 열에너지저장(축열) 시스템에 대한 설명을 하고, 이용사례 및 전기에너지 저장시스템과의 간단한 비교를 하였다.

  • PDF

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Storage of Heat Energy (熱에너지의 貯藏)

  • 노승탁
    • Journal of the KSME
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 1978
  • 열에너지의 저장시스템은 축열채조, 열전달기기와 용기 및 보온재의 3개 주요부로 이루어진다. 축열재료는 현열계의 경우 온도가 상승하거나 잠열이용의 경우 상변화가 생기는 재료를 말한다. 열전달기기는 열에너지를 열원으로부터 축열재로 건열시키거나 축열재로부터 열부하측으로 열에 너지를 전달시키는 역할을 한다. 보온이 된 용기는 축열재를 외부로부터 열차단이 되도록 하여 외부로의 에너지 손실이 없도록한다. 열에너지저장시스템의 주성능득성은 용량, 에너지전달원, 저장온도에 의하여 주어진다. 여기서 용량은 축열재가 저장할 수 있는 에너지의 양을 뜻하고 열 전달율은 에너지원으로부터 축열재료로 또는 반대로 축열재료로부터 에너지부하측으로 전달시킬 수 있는율을 의미한다. 축열온도는 현열계에서는 축열재의 온도가 된다. 이 해설에서는 최근 발간 된 수 개의 자료를 발췌하여 간략히 그 내용을 알리고자 한다.

  • PDF