• Title/Summary/Keyword: 열수송능력

Search Result 5, Processing Time 0.017 seconds

A Study on the Performance of Rotary Heat Exchanger using Aluminum Finned Copper Tube Heat Pipe (동관-알루미늄 휜 회전형 히트파이프 열교환기의 성능에 관한 연구)

  • Park, K.H.;Lee, K.W.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.7-12
    • /
    • 2000
  • The purpose of this study is to develop heat transfer analysis program of heat pipe elements and design a revolving heat pipe exchanger by the performance experiment of hot air production by means of middle-temperature waste heat. Experimental variables are the revolution per minute, normal velocity of inlet air and the temperature of waste heat. The revolving heat exchanger has designed as $2^{\circ}$ in inclination angle of heat pipe bundle and as 20% in working fluid quantity and as water in working fluid. Experimental value of the total heat transfer coefficient was $20w/m^2-^{\circ}C$

  • PDF

Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves (축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구)

  • Suh, Jeong-Se;Lee, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.

Analysis of Cooldown Capability for the HWR Shutdown Cooling System (중수로 정지냉각계통의 냉각능력 분석)

  • Sin, Jeong-Cheol
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • Following the reactor shutdown, the reactor shutdown cooling system must be designed to supply the coolant sufficiently not only to remove the decay heat but to maintain the adequate cooling rate to protect the reactor equipments. In this study, KDESCENT code for the light water reactor and SOPHT, SDCS codes for the heavy water reactor were compared and analyzed to investigate the cooling capability during the shutdown cooling process. The shutdown cooling system design requirements were satisfied during cooling process for both the SDCP and the HTP modes and the design cooling rate of $2.8^{\circ}C/min$ or below was maintained using the SDC heat exchangers. This study shows that the shutdown cooling system in the Wolsong 2, 3, 4 reactors provides sufficient cooling to maintain the nuclear fuel integrity by removing the decay heat of the nuclear fission product.

A Study on the Characteristics of Boiling Heat Trausfer of Thermosyphon Heat Exchangers with Various Micro Grooves (마이크로 그루브를 가진 열사이폰 열교환기의 비등열전달 특성에 관한 연구)

  • Cho Dong-Hyun;Lee Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.421-428
    • /
    • 2004
  • This study concerns the characteristics of boiling heat transfer in two-phase closed thermosyphons with various micro grooves. A study was carried out with the performance of the heat transfer of the thermosyphon having 60 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol, ethanol have been used as the working fluid. The heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20{\%}$ in plain thermosyphon.

  • PDF

A Study on the Performance of Boiling Beat Transfer of Inclined Thermosyphon Heat Exchangers with Internal Grooves (경사 열사이폰 열교환기의 비등열전달 성능에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • This study concerns the performance of boiling heat transfer in inclined thermosyphons with internal grooves. A study was carried out with the performance of the heat transfer of the inclined thermosyphon having 60 internal grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol and ethanol have been used as the working fluid. The inclination angle, three working fluids, heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20%$ in plain thermosyphon. The high heat transfer coefficient was found between $25^{\circ}$ and $30^{\circ}$ of inclination angle for water and between $20^{\circ}$ and $25^{\circ}$ for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves.

  • PDF