• Title/Summary/Keyword: 열수송계통

Search Result 14, Processing Time 0.02 seconds

Analysis of Cooldown Capability for the HWR Shutdown Cooling System (중수로 정지냉각계통의 냉각능력 분석)

  • Sin, Jeong-Cheol
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • Following the reactor shutdown, the reactor shutdown cooling system must be designed to supply the coolant sufficiently not only to remove the decay heat but to maintain the adequate cooling rate to protect the reactor equipments. In this study, KDESCENT code for the light water reactor and SOPHT, SDCS codes for the heavy water reactor were compared and analyzed to investigate the cooling capability during the shutdown cooling process. The shutdown cooling system design requirements were satisfied during cooling process for both the SDCP and the HTP modes and the design cooling rate of $2.8^{\circ}C/min$ or below was maintained using the SDC heat exchangers. This study shows that the shutdown cooling system in the Wolsong 2, 3, 4 reactors provides sufficient cooling to maintain the nuclear fuel integrity by removing the decay heat of the nuclear fission product.

KALIMER의 자본비 분석

  • 문기환;이만기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.737-742
    • /
    • 1996
  • 우리나라는 미래의 노형전략 차원에서 한국형액체금속로인 KALIMER의 개발을 추진 중에 있어 이에 대한 자본비를 추정하였다. 자본비의 비용구성 항목은 EEDB 분류기준을 참고하였으며, 특히 원자로 및 핵증기 공급계통, T/G 건물, 원자로 설비, 열수송장치 둥과 같은 주요 비용에 대해서는 KALIMER의 설계치를 반영하여 평가하였다. KALIMER는 Block 당 333MWe로 구성되며, 3개의 Blocks으로 구성되는 1000MWe를 전용량 규모로 고려하고 있다. 그리하여 여기에서는 FC1B(First Commercial Plant with 1 Block), FC3B(First Commercial Plant with 3 Blocks), NOAK1B(Nth-Of-A-Kind Plant with 1 Block), NOAK3B (Nth-Of-A-Kind Plant with 3 Blocks) 등과 같은 4개의 대안을 설정하였다. 분석결과에 의하면 NOAK3B 대안의 평준화자본비는 30.46 mills/kWh로 학습효과와 규모의 경제효과 등에 의해 FC1B, FC3B, NOAK1B 대안에 비해 각각 42%, 11%, 23% 정도 더 경제적인 것으로 분석되었다. 또한 이들 대안의 평준화자본비는 기존의 1144MWe, 587MWe급의 PWR에 비해서 11%, 39% 정도 저렴하여 경쟁력을 가지고 있는 것으로 평가되었다.

  • PDF

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.