• Title/Summary/Keyword: 열분해 연료유

Search Result 35, Processing Time 0.025 seconds

Pyrolysis Technologies of Polymer wastes for the Production of Alternative Fuel Oil (대체연료유 제조를 위한 고분자 폐기물의 열분해 오일화 기술)

  • 정수현
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2000.04a
    • /
    • pp.19-144
    • /
    • 2000
  • 막대한 에너지원을 갖고 있는 고분자 폐기물은 열분해에 의하여 오일화가 가능하며 이 오일은 대체 연료유로서 사용이 가능하다. 그러나 이 연료유를 생산하기 위해서는 폐플라스틱 및 폐타이어의 경우는 공정을 서로 달리하여야 이용이 가능하며 생성유의 유질에서도 다소 차이가 있다. 올레핀계가 함유된 폐플라스틱을 열분해 오일화 하기 위해서는 분해 촉매를 사용하여야 하며 열분해유는 경유분과 d사한 성상을 갖고 있으며 폐타이어의 열분해유는 유황성분 및 BTX 분을 상당량 함유하고 있어서 경유분과는 다소 다른 성상을 갖고 있다. 또한 폐타이어 및 폐플라스틱의 열분해 기술이 사용화되기 위해서는 열분해시 발생하는 Coking 문제 극복 및 시스템에 대한 설계기술이 뒷받침되어야 한다.

  • PDF

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.

Recent Research Trend in the Catalytic Pyrolysis of Waste Plastics for the Production of Renewable Fuels and Chemicals (폐플라스틱 촉매 열분해를 통한 재생 연료 및 화학제품 생산 기술 연구동향)

  • Kim, Young Min;Lim, Se Jeong;Kim, Jichan;Jae, Jungho
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.10-21
    • /
    • 2021
  • 최근 폐플라스틱의 사용량 증가와 미세플라스틱으로 인한 해양 오염 및 생태계 축적 등의 부정적인 영향으로 인해 플라스틱 업사이클링(upcycling) 및 리파이너리(refinery) 기술에 대한 관심이 증가하고 있다. 화학적 재활용 방법 중의 하나로, 폐플라스틱의 열분해를 통해서 재생 연료 및 화학물질을 생산하는 연구는 90년도에 활발히 진행된 바 있고, 최근의 환경오염에 대한 대응으로서 다시 많은 관심을 받고 있다. 폐플라스틱을 효율적으로 분해하기 위해서는 촉매를 사용하여 분해 속도를 제어해 주어야 하며, 사용된 촉매의 특성에 따라 최종 생성물의 성상이 크게 달라진다. 본 기고문에서는 폐플라스틱의 촉매 열분해를 통해 가솔린, 디젤유 및 항공유와 같은 수송용 연료, 발전용 연료 혹은 방향족 화학 물질을 생산하는 기술들의 최신 연구 동향을 다루고 향후 전망에 대해 기술하고자 한다. 아울러 최근 몇 년간 많은 연구가 있었던 바이오매스와 폐플라스틱의 혼합열분해를 통한 하이브리드 촉매 공동 열분해 기술에 대해서도 다루고자 한다.

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

Influence of Reaction Temperature on Bio-oil Production from Rice Straw by the Pyrolysis (볏짚으로부터 바이오오일 생산에 대한 열분해 반응온도의 영향)

  • Kang Bo-Sung;Park Young-Kwon;Kim Joo-Sik
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.12-19
    • /
    • 2006
  • Rice straw is one or the main renewable energy sources in Korea. Bio-oil is produced from rice straw with a lab-scale equipment mainly with a fluidized bed and a char removal system. It was investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiments were conducted at $466^{\circ}C,\;504^{\circ}C\;and\;579^{\circ}C$, respectively. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. Tn the experiments, we observed that the production of bio-oil was decreased with temperature, and the bio-oil contained very useful chemicals.

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of Raw Material Resin to Produce Fuel-Oil from Waste Vinyl (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • The effects of zeolite type catalysts addition on the thermal decomposition of low density polyethylene(LDPE) and ethylene vinyl acetate(EVA) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The zeolite type catalysts tested were natural zeolite, FCC catalyst, used FCC catalyst, and catalyst A. As the results of TGA experiments, addition of antifogging-agent decreased the pyrolysis point to $250^{\circ}C$, but addition of longevity-agent and clay reduced the pyrolysis rate in EVA resin. Addition of the zeolite type catalysts in the LDPE resin increased the pyrolysis rate in the order of catalyst A > used FCC catalyst > natural zeolite > LDPE resin. Addition of the zeolite type catalysts in the EVA resin increased the pyrolysis rate in the order of used FCC catalyst > natural zeolite > catalyst A > EVA resin. In the DSC experiments for LDPE resin, addition of zeolite type catalysts decreased the melting point and the heat of pyrolysis reaction in the order of catalyst A > used FCC catalyst > natural zeolite> LDPE resin. In the batch system experiments, the mixing of natural zeolite enhanced the yield of liquid fuel oil.

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil (폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.442-448
    • /
    • 2012
  • The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of $330{\sim}360^{\circ}C$ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.

A Comparision Study of LDPE Pyrolysis over Resin Additives and Inorganic Compounds of Silica Alumina Type (수지첨가제와 실리카알루미나 계열 무기물이 LDPE 수지의 열분해에 미치는 영향 비교 연구)

  • Bak, Young-Cheol;Choi, Joo-Hong;Kim, Nam-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.596-602
    • /
    • 2006
  • The effects of resin additives and inorganic compounds addition on the thermal decomposition of low density polyethylene(LDPE) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The silica-alumina type compounds tested were kaolinite, bentonite, perlite, diatomaceous earth, activated clay and clay. The resin additives were antiforgging-agent and longevity-agent. As the results of TGA experiments, addition of antifogging-agent, longevity-agent and clay increased the temperature of the maximum reaction rate($T_{max}$). The silica-alumina type inorganic materials increased the pyrolysis reraction rate in the order of activated clay, diatomaceous earth, bentonite, perlites, and kaolinite. In the DSC experiments, addition of antifogging-agent and clay decreased the heat of fusion and the heat of pyrolysis reaction. Bentonite decreased 20% of the heat of fusion and 25% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of clay retarded the initial producing rate of fuel oil, but increased the yield of fuel oil. Addition of bentonite increased the yield of fuel oil from LDPE resin. Mixing of antifogging-agent and longevity-agent produced the fuel oil having lower carbon number. The amounts of the carbon number below 12 in fuel oil decreased with adding the clay. That below 23 in fuel oil increased with mixing of bentonite, perlite, kaolinite, and activated clay. But the mixing of diatomaceous earth did not affect the carbon contents of fuel oil from pure LDPE resin. In the silica-alumina type inorganic material used in this experiments, bentonite was the most effective from the pyrolysis heat, yields, and the characteristics of fuel oil.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel (바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Min-Jae;Lee, Seok-Hwan;Cho, Jeong-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.420-427
    • /
    • 2017
  • Recently, the depletion of fossil fuels, global warming and environmental pollution have emerged as a worldwide problem, and studies of new renewable energy sources have been progressed. Among the many renewable energy sources, the use of bio fuel has the potential to displace fossil fuels due to low price, easy to handle, and the abundant sources. Pyrolysis oil (PO) derived from waste wood and sawdust is considered an alternative fuel for use in diesel engines. On the other hand, PO is limited to diesel engines because of its low cetane number, high viscosity, high acidity, and low energy density. Therefore, to improve its poor properties, PO was mixed with alcohol fuels, such as ethanol. Early mixing with ethanol has the benefit of improving the storage and handling properties of the PO. Furthermore, a PO-ethanol blended fuel was injected separately, which can be fired through pilot-injected diesel in a dual-injection diesel engine. The experimental results showed that the substitution of diesel with blended fuel increases the amount of HC and CO, but reduces the NOx and PM significantly.

Combustion Reactivity Assessments of Oils Used for the Cold Start-Up Operation of Large Scale Boiler (대용량 보일러의 냉간기동용 액체 연료에 대한 연소 반응성 평가)

  • LEE, JANG HO;PARK, HO YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • The experimental work has been carried out for the study of pyrolysis of oil samples used in industrial and utility boilers in Korea. For five oil samples, the characteristics of pyrolysis have been investigated with a thermogravimetric analyzer (TGA), and their kinetic parameters were obtained and compared each other. The rate order of pyrolysis rate for five oils were as follows: by-product fuel oil, pyrolysis oil, diesel, a heavy oil and refined oil. The pyrolysis of refined oil has been successfully described by the three step, first order reaction model while the single step reaction model has been used for other oils. For the reaction temperature over 550 K, the reactivity of refined oil was very poor compared with other oils.