• Title/Summary/Keyword: 열분석적 특성

Search Result 2,493, Processing Time 0.037 seconds

The Characteristic and Origin of Organic Matter in the ODP Leg 204 Site 1249C and Site 1251B (ODP Leg 204 Site 1249C와 Site 1251B 퇴적물의 유기물 기원 및 지화학적 특성)

  • Shim, Eun-Hyoung;Yun, Hye-Su;Lee, Young-Joo;Han, Sang-Young
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.71-85
    • /
    • 2014
  • To study biogeochemical characteristics and origin organic matter, sediment samples were taken from Site of 1249C and Stie 1251B of ODP Leg 204. Data of Rock-Eval, isotope, and element analysis generally indicate dominance of marine organic matter in sediments deposited under marine sedimentary environment. Only Rock-Eval data are somewhat different from those of others owing to under-maturation of organic matter. Samples of Site 1249C show high content of gas hydrate, whereas Site 1251B low content of gas hydrate in some intervals of the core. This result may be accounted to different location of two cores and presence of transportation passage (Horizon A, BSR 2) of thermogenic gas in the core, 1249 C. However, Site 1251B Located in the basin of low accumulation of gas hydrate is presumed to be limited in the gas hydrate production. Because not only transportation passage is limited to move thermogenic gas from the core, but also gas supply was not enough. Therefore, the biogenic gas that resulted from diagenesis of there sediment is superior.

$CO_2$ 냉매의 증발열전달 특성

  • 정시영
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.15-23
    • /
    • 2002
  • 환경친화적인 냉매를 탐색하는 과정에서 자연냉매 $CO_2$는 1990년대 초에 많은 사람들의 관심을 다시 끌게 되었고, 그 이후 구미 선진국 위주로 많은 연구가 이루어지고 있다. 특히 $CO_2$는 탄화수소계 냉매가 안전상의 이유로 사용되기 어려운 차량용 냉방 시스템과 온수제조용 열펌프 시스템에 대하여 많은 연구가 이루어져 왔으며 최근에는 가정용 냉난방 시스템에 대한 연구도 진행되고 있다. $CO_2$를 냉매로 사용하는 냉동 시스템에 있어서 증발기는 시스템의 중요한 구성 요소이므로 제품 개발을 위해서는 증발기에서의 열전달 및 압력손실 특성에 대한 연구가 선행되어야 한다. $CO_2$의 증발 열전달에 있어서 작동매채인 $CO_2$의 비체적, 비열, 점성계수, 표면장력 등의 물성치가 크게 변화하므로 기존에 널리 사용되던 냉매의 중발열전달과는 상당히 다른 결과가 나타난다. 예를 들면 기존의 냉매에서는 건도가 증가함에 따라 열전달계수가 증가하는 것으로 알려져 있으나 $CO_2$의 경우에는 오히려 열전달계수가 감소하는 것으로 보고되고 있다. 이처럼 $CO_2$는 증발열전달 과정에서 기존 냉매의 경향으로부터 예측하기 힘든 결과가 나타나므로 다양한 형상의 증발기에 대하여 실험적으로 압력손실과 열전달계수를 구하는 연구는 성공적인 $CO_2$ 냉동 시스템의 개발을 위하여 필수 불가결하다. 본고에서는 $CO_2$ 냉동 시스템의 개발에 도움이 될 수 있도록 지금까지 국내외에서 수행된 $CO_2$ 증발 열전달에 관한 문헌조사를 통하여 연구결과들을 비교, 분석하고 향후의 연구 방향을 제시하고자 한다.

  • PDF

A Study on the Damage by Burning Characteristics of Insulating Materials of ELCB by Degradation Causes (열화원인에 의한 누전차단기 절연재료의 소손특성에 관한 연구)

  • Oh, Sae-Byeol;Ok, Gyeong-Jae;Jee, Seung-Wook;Kim, Si-Kuk;Lee, Chun-Ha
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.480-483
    • /
    • 2012
  • 열화원인에 의한 누전차단기 절연재료의 소손특성을 확인하기 위해서 전기적인 트래킹 열화에 의한 누전차단기 절연재료의 소손특성과 외부 복사열에 의한 누전차단기 절연재료의 소손특성을 비교 분석하였다.

  • PDF

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.

Experimental and Numerical Study of the Thermal Decomposition of an Epoxy-based Intumescent Coating (실험과 계산을 통한 에폭시 계열 내화도료의 열분해에 관한 연구)

  • Kim, Yangkyun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • This study investigates the characteristics of thermal decomposition of an epoxy-based intumescent paint using thermogravimetric analysis (TGA) and numerical simulation. A mathematical and numerical model is introduced to describe mass loss profiles of the epoxy-based intumescent coating induced by the thermal decomposition process. The decomposition scheme covers a range of complexity by employing simplified 4-step sequential reactions to describe the simultaneous thermal decomposition processes. The reaction rates are expressed by the Arrhenius law, and reaction parameters are optimized to fit the degradation behavior seen during thermogravimetric (TG) experiments. The experimental results show a major 2-step degradation under nitrogen and a 3-step degradation in an air environment. The experiment also shows that oxygen takes part in the stabilization of the intumescent coating between 200 and $500^{\circ}C$. The simulation results show that the proposed model effectively predicts the experimental mass loss as a function of time except for temperatures above $800^{\circ}C$, which were intentionally not included in the model. The maximum error in the simulation was less than 3%.

Traffic Flow Control Channels Analysis Using Symmetry Link Network in Wireless Communication (무선통신에서 대칭링크 네트워크를 이용한 트래픽 흐름제어 채널분석)

  • Park, Kwang-Chae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1811-1818
    • /
    • 2009
  • This paper is about the research to maintain and enhance the flow of data of the wireless traffic control. Various types of burst traffic that were found at TCP window flow control have been removed or mitigated using the two-way traffic control. Currently, TCP ACK Compression problem appears during the transmission of the wireless communication control channel because the queues are mostly located at the end system. Therefore, in this paper, the periodic bursty characterist of the source IP queue wilt be analyzed to predict the maximum value of queues. And then the prediction tool will be applied to wireless communication traffic control to handle symmetric traffic as to increase the throughput and improve the performance.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

Convective Heat Transfer to Water near the Critical Region in Horizontal Rectangular Ducts (수평 직사각 덕트 내 임계점 부근 물의 대류열전달 특성)

  • Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.477-485
    • /
    • 2012
  • Fluid flow and heat transfer in horizontal ducts are strongly coupled with large changes in thermodynamic and transport properties near the critical region as well as the gravity force. Numerical analysis has been carried out to investigate convective heat transfer in horizontal rectangular ducts for water near the thermodynamic critical point. Convective heat transfer characteristics, including velocity, temperature, and the properties as well as local heat transfer coefficients along the ducts are compared with the effect of proximity on the critical point. When there is flow acceleration because of a density decrease, convective heat transfer characteristics in the ducts show transition behavior between liquid-like and gas-like phases. There is a large variation in the local heat transfer coefficient distributions at the top, side, and bottom surfaces, and close to the pseudocritical temperature, a peak in the heat transfer coefficient distribution resulting from improved turbulent transport is observed. The Nusselt number distribution depends on pressure and duct aspect ratio, while the Nusselt number peak rapidly increases as the pressure approaches the critical pressure. The predicted Nusselt number is also compared with other heat transfer correlations.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Efficient water resource management using cluster and trend analysis for each rainfall station (강우 관측소별 군집 및 경향성 분석을 활용한 효율적인 수자원 관리)

  • Won-joon Wang;Seong Cheol Shin;Yu Jin Kang;Seungmin Lee;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.115-115
    • /
    • 2023
  • 최근 기후변화의 영향으로 국내에서 강우량과 유출량의 변동성이 커짐에 따라 효율적으로 수자원을 관리하는 데 어려움을 겪고 있다. 따라서 수자원 관리 측면에서 강우관측소를 대상으로 군집 분석과 경향성 분석을 통해 사전에 강우 시계열 자료의 추세와 특징을 파악하면 용수 공급과 가뭄 및 홍수피해 저감 등에 효과적으로 대처할 수 있다. 본 연구에서는 2000년부터 2019년까지낙동강 유역의 64개 강우관측소를 대상으로 동질성 검정과 수정 Mann-Kendall (MK) 검정을 적용하여 강우 시계열 자료의 월별, 계절별, 연도별 경향성 분석을 수행하였다. 또한, 경향성이 나타나는 관측소별 세부지표(연평균 강우량, 표고 등)를 기준으로 K-means 군집 분석을 수행하여 군집별 강우 특성을 파악하고자 하였다. 분석을 수행한 결과 경향성 분석에선 3월, 4월, 11월, 12월, 봄 및 가을에는 강우량이 증가 추세를 보였고 1월, 5~9월, 여름과 연도별로는 감소 추세가 나타났다. 또한 군집 분석에서는 Silhouette analysis를 기반으로 최적의 군집 개수를 3개로 설정했을 때 군집별 강우 세부지표의 통계값이 관측소별 표고에 비례하는 특징이 나타났다. 연구를 통해 도출된 군집별 강우 특성과 관측소별 경향성 분석결과를 연계하면 강우량의 변동성을 고려한 효율적인 수자원 관리 방안을 마련하는 데 활용할 수 있을 것으로 판단된다.

  • PDF