• Title/Summary/Keyword: 열변형 해석

Search Result 192, Processing Time 0.025 seconds

A Study on the Analysis of Thermal Durability due to the Configuration of Mortar (박격포의 형상에 따른 열적 내구성의 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-76
    • /
    • 2015
  • This study investigates the thermal efficiency and the efficiency of heat transfer through thermal analysis when the same heat is applied to a mortar frame by firing with various configurations of mortar. As the inside diameter of the mortar increases, the additional material must be reinforced. In comparison with the extent of getting cold due to models, a mortar with the strut under the gun barrel becomes cooler than one with no strut. The thermal deformation at firing becomes different. According to the configuration of mortar and its inside diameter, the extent of getting cold becomes different. This study result can be effectively applied for improving the efficiency of the heat transfer of mortar.

Analysis of Pressure Plate Behavior of a Clutch Including Thermal and Mechanical Material Properties (기계적 및 열적 물성을 고려한 클러치 압력판의 거동해석)

  • Hur, Man-Dae;Lee, Sang-Uk;Kim, Gug-Yong;Kang, Sung-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.524-532
    • /
    • 2009
  • In the mechanical clutches, the pressure plate is one of the important parts for transferring the power and reducing the vibration. Instead of gray and ductile irons, CGI(Compacted Graphite Cast Iron) is concerned to be the replacement recently. A thermo-mechanical coupled analysis was performed to investigate the behavior of the pressure plate for manual clutches. Thermal and mechanical properties of three kinds of cast irons were obtained from the mechanical experiments and referred other technical reports. The results of FEM analysis, were well match with the experimental ones. In this designated FEM method, temperature distribution, stress distribution and thermal deformation were successfully gained and these results will help to design the pressure plate which was made by cast irons including CGI.

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

The effects of thermal expension properties of flexible metal substrates on the Si thin film (금속 연성기판재의 열팽창 특성이 Si 박막 층에 미치는 영향)

  • Lee, Min-Su;Yim, Tai-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.367-369
    • /
    • 2009
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 일반적으로 기판재와 cell을 구성하는 반도체 층의 열팽창 거동 차이에 의한 열 변형이 태양전지의 공정안정성에 영향을 주는 것으로 알려져 있으며, cell을 구성하는 반도체 층과 열팽창 거동이 유사한 금속기판재의 적용이 필요하다. Si 박막 태양전지의 경우 Si 열팽창 거동과 비슷한 특성을 갖는 기판재의 개발이 필요하다. 전주법을 적용하여 조성이 다른 Ni계 합금의 열팽창 거동을 TMA 장비를 사용하여 측정하였다. 그리고 전산해석 Tool을 활용하여 가상의 Si 박막 태양전지 제조공정을 설정하고 고온 공정온도에서 상온으로 냉각시 발생되는 층간 열변형 연구를 수행하였고 열팽창 거동이 다른 합금 상에 Si층을 증착하여 열 충격에 의한 결함 발생여부를 관찰하였다.

  • PDF

Thermal Analysis According to Material of Manifold (매니폴드 재질에 따른 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • Manifold could apply stainless steel with light weight and durability to improve fuel efficiency at automotive industry. This study is analyzed and compared by heat transfer and deformation according to the materials of cast iron and stainless steel. The heat transfer at manifold of cast iron at the distribution of heat temperature is more than that of stainless steel. But the value of maximum heat deformation in case of stainless steel is 1.5 times as great as that in case of cast iron. The value of maximum heat equivalent stress in case of stainless steel is 2.7 times as great as that in case of cast iron. This maximum stress at manifold is shown at the part assembled with engine body.

  • PDF

인공위성용 별추적기 장착 구조물의 열변형에 의한 지향오차 해석

  • Kim, Seon-Won;Lee, Jang-Jun;Hyeon, Beom-Seok;Kim, Gyeong-Won;Hwang, Do-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.3-31.3
    • /
    • 2010
  • 인공위성은 궤도상에서 별추적기를 기준으로 자세제어를 수행한다. 이러한 별추적기의 지향방향 정밀도는 위성의 운용 및 관측성능에 커다란 영향을 미치게 된다. 따라서 별추적기의 지향방향은 초기에 설정된 지향방향으로부터 변화하지 않는 것이 중요하다. 일반적으로 별추적기는 가시영역을 확보하기 위하여 특정한 방향으로 장착되어야 하고 이를 위하여 위성 구조물과 연결시켜 주는 장착 구조물이 적용된다. 이러한 장착 구조물에는 히터가 부착되어 온도 제어를 함으로써 별추적기의 지향오차를 최소화 하도록 한다. 이 논문에서는 온도제어를 위해 히터가 작동하여 장착구조물에 온도구배가 발생할 경우 별추적기의 지향방향의 변화가 허용 가능한 수준이내에 해당하는가를 해석적으로 검토한 결과를 기술한다.

  • PDF

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • Kim, Dong-Kil;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Structure Analysis on Thermal Deformation of Super Low Temperature Liquefied Gas One-module Vaporizer (초저온 액화가스 단일 모듈 기화기의 열변형 구조해석)

  • Park, G.T.;Lee, Y.H.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.22-28
    • /
    • 2007
  • Liquefied gas vaporizer is a machine to vaporize liquefied gas such as liquid nitrogen($LN_{2}$), liquefied natural gas(LNG), liquid oxygen($LO_{2}$) etc. For the air type vaporizer, the frozen dew is created by temperature drop (below 273 K) on vaporizer surface. The layer of ice make a contractions on vaporizer. The structure analysis on the heat transfer was studied to see the effect of geometric parameters of the vaporizer, which are length 1000 mm of various type vaporizer. Structure analysis result such as temperature variation, thermal stress and thermal strain have high efficiency of heat emission as increase of thermal conductivity. As the result, Frist, With-fin model shows high temperature distribution better than without-fin on the temperature analysis. Second, Without-fin model shows double contractions better then with-fin model under the super low temperature load on the thermal strain analysis. Third, Vaporizer fin can be apply not only heat exchange but also a stiffener of structure. Finally, we confirm that All model vaporizer can be stand for sudden load change because of compressive yield stress shows within 280 MPa on thermal stress analysis.

  • PDF

Finite Element Analysis of Thermally-Induced Deformation in SMC Compression Molding (SMC 압축성형공정에서의 열변형에 관한 유한요소해석)

  • Lee, Jae-Hyoung;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1997
  • Thermally-induced deformation in SMC(Sheet Molding Compound) products is analyzed using three dimensional finite element method. Planar fiber orientation, which causes the anisotropic material properties, is calculated through the flow analysis during the compression stage of the mold. Also curing process is analyzed to predict temperature profile which has significant effects on warpage of SMC products. Through the developed procedure, effects of various process conditions such as charge location, mold temperature, fiber contents, and fiber orientations on deformation of final products are studied. and processing strategies are proposed to reduce the warpage and the shrinkage.