• Title/Summary/Keyword: 열방성액정

Search Result 64, Processing Time 0.207 seconds

Elastic and Viscoelastic Properties of an Extruded LCP/PC Blend (LCP/PC 블렌드 압출몰의 탄성 및 점탄성 특성)

  • 서문호
    • The Korean Journal of Rheology
    • /
    • v.4 no.2
    • /
    • pp.107-115
    • /
    • 1992
  • 전방향족 에스테르계 열방성 액정중합체(LCP) 벡트라(Vectra)와 폴리카보네이트 (PC)를 무게비 30/70으로 구성한 고분자 블렌드를 확장되는 다이를 통하여 압출한후 압출쉬 트의 탄성 및 점탄성 특성을 만능시험기(UTM)와 동적기계적 스펙트로터(RDS)를 이용하여 측정하였다. 블렌드의 기계적 특성은 기지재인 PC의 ductility에도 불구하고 순수 LCP보다 도 더 brittle하였다. 그러나 탄성률이나 인장강도 모두 PC보다 훨씬 높게 나타나 보강효과 가 확인되었다. 이러한 보강효과는 복합계 내부에서 스스로 형성된 직경 2~10$\mu$m 정도의 거대 섬유소 그리고 거대 섬유소는 다시 직경 0.05$\mu$m 정도의 미세섬유로서 구성된 형태학 적 특성으로 설명될수 있었다. 한편 블렌드의 점탄성 거동은 마치 entanglement coupling이 높은 계의 특성과 비슷하였으며 시편의 위치에 따른 특성변화는 관찰되지 않았고 순수산 LCP의 점탄성 특성과 아주 유사하였다.

  • PDF

Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (8-Cholesteryloxycarbonyl) heptanoated Disaccharides (콜레스테릴옥시카본화 그리고 (8-콜레스테릴옥시카보닐)헵타노화 이당류들의 열방성 액정 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2007
  • Fully cholesteryloxycarbonated and (8-cholesteryloxycarbonyl) heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with cholesteryl chloroformate or 8- cholesteryloxycarbonylheptanoyl chloride, and their thermotropic liquid crystalline properties were investigated. All the cholesteryloxycarbonated derivatives (CH1DSs) formed enantiotropic cholesteric phases, whereas all the (8-cholesteryloxycarbonyl) heptanoated derivatives (CH8DSs) exhibited monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches (${\lambda}m's$) decrease with increasing temperature. All the CH1DSs, contrast with the CH8DSs, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the disaccharide chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}m$ observed for EH8DSs were entirely different from those reported for the cholesterol-bearing dimers and triplet and the (8-cholesteryloxycarbonyl) heptanoated polysaccharide derivatives. The results were discussed in terms of the difference in the number of the mesogenic units per mole of repeating unit and the flexibility of the main chain.

Infulence of Spacer and Degree of Esterification on Thermotropic Liquid Crystalline Properties of Amyloses Bearing Cholesteryl Group (스페이서와 에스터화도가 콜레스테릴 그룹을 지닌 아밀로오스들의 열방성 액정 특성에 미치는 영향)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.356-367
    • /
    • 2007
  • Three kinds of amylose derivatives such as: cholesteryloxycarbonated amyloses(CAMs) with degree of esterification(DE) ranging from 1.8 to 3, (6-cholesteryloxycarbonyl)pentanoated amyloses(PAMs) with DE ranging from 0.3 to 3, and fully cholesteryloxycarbonated PAMs(CPAMs) were synthesized, and their thermotropic liquid crystalline properties were investigated. CAMs with $DE{\geq}2.6$, PAM with DE=1.6 and all the CPAMs formed enantiotropic cholesteric phases, whereas PAM with $DE{\geq}2.2$ exhibited monotropic cholesteric phases. PAM with $DE{\geq}2.2$ and CPAMs with (6-cholesteryloxycarbonyl)pentanoyl DE (DS) more than 1.0 formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_{m'}s$) decrease with increasing temperature. However, the ${\lambda}_{m'}s$ of these samples decreased with increasing DS at the same temperature. On the other hand, CAMs, PAM with DE=1.6, and CPAM with DS=0.3 did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the main chain and DS. The thermal stability and degree of order in the mesophase observed for the amylose derivatives highly depended on DE or DS. The results were discussed in terms of the difference ul the hydrogen bond, the internal plasticization, and the decoupling of the motion of side group with the main chain.

Thermotropic Liquid Crystalline Behavior of Hydroxypropyl Celluloses Bearing Cholesteryl and Nitroazobenzene Groups (콜레스테릴과 니트로아조벤젠 그룹을 지닌 히드록시프로필 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.446-457
    • /
    • 2008
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives: 6- (cholesteryloxycarbonyl) pentoxypropyl celluloses(CHPCs) with degree of esterification(DE) ranging from 0.6 to 3, 6-[4-{4'-(nitrophenylazo)phenoxycarbonyl}] pentoxypropyl celluloses (NHPCs) with DE ranging from 0.4 to 3, and fully 6-(cholesteryloxycarbonyl) pentanoated NHPCs (CNHPCs) were synthesized, and their thermotropic liquid crystalline properties were investigated. All the CHPCs and NHPCs with $DE{\leq}1.7$ formed enantiotropic cholesteric phases, whereas CNHPCs with 6-(cholesteryloxycarbonyl) pentanoyl DE(DEC) more than 1.6 exhibited monotropic cholesteric phases. On the other hand, NHPCs with $DE{\geq}2.4$ and CNHPCs with $DEC{\leq}1.3$ showed monotropic nematic phases. NHPCs with $DE{\leq}l$, as well as HPC, formed right-handed helices whose optical pitches (${{\lambda}_m}'s$) increase with temperature, while all the CHPCs formed left-handed helices whose ${{\lambda}_m}'s$ decrease with temperature. In contrast with these derivatives, NHPCs with $1.4{\leq}DE{\leq}1.7$ and CNHPCs with $DEC{\geq}1.6$ did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cellulose chain and the cholesteryl group highly depends on the chemical structure and DE of mesogenic group.

Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (Cholesteryloxycarbonyl) alkanoated Celluloses (콜레스테릴옥시카본화 그리고 (콜레스테릴옥시카보닐)알카노화 셀룰로오스들의 열방성 액정 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.169-177
    • /
    • 2008
  • The thermal and optical properties of cellulose tri(cholesteryloxy) carbonate(CCE0) and cellulose tri(cholesteryloxycarbonyl)alkanoates (CCEn, n=$2{\sim}8$, 10, the number of methylene units in the spacer) were investigated. CCE0 formed an enantiotropic cholesteric phase, whereas all the CCEn exhibited monotropic cholesteric phases. CCEn with n=$3{\sim}8$ formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_m's$) decrease with increasing temperature. On the other hand, CCE0 and CCEn with n=2 or 10 did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the main chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}_m$ observed for CCEn highly depended on n. The results were discussed in terms of the differences in the internal plasticization, the arrangement of the side groups, and the conformation of the molecules.

Solid State Interfacial Phenomena of High Performance Two Phase Polymer System(I) -Preparation and Characteristics of Liquid Crystalline Polyester and Poly(ε-caprolactam) Alloy- (고기능 고분자 복합재의 고상계면 현상에 대한 연구(I) -액정 Polyester와 Poly(ε-caprolactam) Alloy의 제조와 그 특성)

  • Kang, Doo Whan;Kang, Ho Jong;Jung, Hyo Sung;Lee, Yong Moo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • LCP/PA alloy was prepared by blending poly(${\varepsilon}-caprolactam$) (PA) with liquid crystal polyester, Vectra (LCP) having high elasticity and strength. The alloy prepared amorphous PA with more than 10 parts of thermotropic LCP had poor compatibility. To increase the compatibility of the alloy, compatibilizing agent, poly(glycinylmaleimide-co-methylmetacrylate)[poly(GMI-co-MMA)] copolymer was prepared by copolymerizing N-glycinylmaleimide(GMI) with methylmetacrylate(MMA). And then, it was blended with LCP and PA to produce LCP/PA alloy having an excellent compatibility. The compatibility characteristics of the alloy prepared from LCP and PA using the poly(GMI-co-MMA) was determined by measuring the thermal characteristics of glass transition temperature of nematic LCP, and rheological properties, and also high rate impact and flexual characteristics of the alloy were determined.

  • PDF

Synthesis and Properties of Semi-Flexible Aromatic Polyesters Containing Pentamethylene Group in Main Chain (주사슬에 펜타메틸렌기를 가지고 있는 반 유연성 방향족 폴리에스터의 합성 및 성질)

  • Bang, Moon-Soo;Yoon, Doo-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.436-441
    • /
    • 2009
  • Semi flexible polyesters containing aromatic rings and pentamethylene groups in the main chain were synthesized by direct polycondensation reaction. The structures of these polymers were investigated by $^1H$-NMR and FT-IR and the phase transition behavior was characterized with DSC, TGA and crossed polarizing microscope. Inherent viscosities ($\eta_{inh}$) of polymers measured in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane were between 0.46 and 1.30 dL/g. As increasing the linearlity of rigid moieties in polyster, melting transition temperatures ($T_m$) increased and solubilities in organic solvents decreased. P-H, P-mH and P-4H of the polymers formed turbid melts that showed stir-opalescence and nematic phase at the broad anisotropic region, However, P-R, P-C and P-2B did not exhibit any textures related to the liquid crystallinity.

Properties of Liquid Crystalline Polyester/Poly(ethylene 2,6-naphthalate) Blend Fibers (액정 폴리에스테르/PEN 블렌드 섬유의 성질)

  • Kim, Won;Kim, Young-Yong;Son, Jung-Sun;Yun, Doo-Soo;Han, Chul;Choi, Jae-Kon;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.244-257
    • /
    • 2002
  • A thermotropic liquid crystalline polymer(TLCP) which has flexible butylene/hexylene spacers in the main chain and a triad aromatic ester type mesogenic unit containing a naphthyl group was prepared by solution polycondensation. The in-situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystalline polymer(TLCP) were prepared and melt spun at different TLCP contents and different draw ratios to produce monofilaments. Blends of the TLCP with PEN were investigated in terms of thermal, mechanical properties and morphology. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature to isotropic melt from mesophase was 249℃. The blends showed well dispersed TLCP phases in the PEN matrix without macroscopic phase separation. Inclusion of TLCP in the blends decreased the cold crystallization temperature of PEN in the blend, therefore, the TLCP acts as a nucleating agent in the blend and showed good interfacial adhesion between the dispersed LCP phases and PEN matrix with domain sizes 40~50 nm in diameter and well developed fibrillation in the monofilaments. The TLCP acted effectively as a reinforcing material in the PEN matrix at the 10wt% level, it led to an increase of initial modulus up to 270% and tensile strength by 235%, while the elongation rate increasing with higher draw ratios.

Thermotropic Liquid Crystalline Behavior of α,ω-Bis(4-nitroazobenzene-4'-carbonyloxy)alkanes (α,ω-비스(4-니트로아조벤젠-4'-카보닐옥시)알칸들의 열방성 액정 거동)

  • Jeong, Seung Yong;Hwang, Dong Jun;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.230-237
    • /
    • 2010
  • A homologous series of linear liquid crystal dimers, ${\alpha},{\omega}$-bis(4-nitroazobenzene-4'-carbonyloxy)alkanes (NATWESn, n = 2~8, 10, the number of methylene units in the spacer) have been synthesized, and the thermal behavior of the series has been investigated. All the dimers formed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This behavior was rationalized in terms of the change in the average shape of the spacer on varing the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of NATWESn were very similar to those of the corresponding ether compounds, while they were significantly different from those of the monomesogenic compounds, 4-{4'-(nitrophenylazo)phenoxy}alkanoyl chlorides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-nitrophenylazo) phenoxycarbonylalkanoyloxy}ethylene]s. The results were discussed in terms of the 'irtual trimer model'by Imrie.

X-ray Analys is of the Thermotropic Liquid Crystalline Copolyester Poly(1 -phenylethylpphenylene-tere phthalate) (열방성 액정폴리에스터Poly(1-phenylethyl.p-phenyleneterephthalate)의 X-선 결정구조해석)

  • 홍성권
    • Korean Journal of Crystallography
    • /
    • v.2 no.2
    • /
    • pp.13-21
    • /
    • 1991
  • X-ray methods have been used to determine the chain conformation and packing of the thermotropic liquid crystalline copolyester prepared from 50% tarephthaloyl chloride(TPA) and 50% (1-phenylethyl) hydroquinone(PEHQ). The x-ray patterns of annealed melt-spun fibers contain a series of annealed melt-Pointing to a well ordered crystalline structure, despite the random sense(2 or 3-) of the 1-phenylethyl substiuttion on the TPA-hydroquinone backbone. The crystalline fiber is monoclinic with space group P2l and the unit cell has dimensions 11=12.77 A, b=10.17 A (upique axis), c=12.58 h (fiber axis). and β=90.1° and contains TPA-PEHO units of to or chains. The random substitution of 1-phenylethyl groups was modelled by placing these groups at both the 2and 3 positions and giving each a weight of one-hal(. T he structure has been refined by linked a rom least square methods(LALS) against 16 observed and 21 unobserved reflections. and had a final R value of 0.20. Packing of the side chains is effected by staggering adjacent chains along the b axis by approximately c/2, so that the side chains are interleaved. The phenyl-COO and COO-phenyl torsion angles are -6.1 and 65.6, respectively, such that the main chain phenyls are mutually inclined at 59.5 (the ester groups are assumed to be planar). These torsion angles compare very well with those for the model compounds, notably phenylbenzoate, and can be used in future analyses of the structures of more complex random sequence copolyesters.

  • PDF