• Title/Summary/Keyword: 열량제어

Search Result 74, Processing Time 0.02 seconds

A Study on Nutritive Values and Salt Contents of Commercially Prepared Take-Out Boxed-Lunch In Korea (한국형 시판 도시락의 영양가 및 식염함량)

  • Kim, Bok-Hee;Lee, Eun-Wha;Kim, Won-Kyung;Lee, Yoon-Na;Kwak, Chung-Shil;Mo, Sumi
    • Journal of Nutrition and Health
    • /
    • v.24 no.3
    • /
    • pp.230-242
    • /
    • 1991
  • This research was conducted on the 10 take-out boxed-lunches commercially prepared in the department stores. chain stores. and the public railroad trains in Korea. Sampling was conducted from February 1990 to March 1990. Nutritive values and sodium contents of the 10 boxed-lunch samples are summarized as follows : 1) The average weight(percentage) of the cooked rice and the side dishes were 304.6g(49.4) and 312.4(506%), respectively. The weight of these samples were significantly heavier than that of Japanese style boxed-lunches. 2) The average number of the side dishes was 12. The average numbers of food items classified by the five food groups were 6.1 in protein food group, 0.3 in calcium food group. 6.0 in vitamin and mineral food group. 1.5 in carbohydrate food group, and 1.5 in oil and fat food group. 3) They contained on the average 840.7kcal of energy, 38.9g of protein, 22.7g of fat, 120.4g of carbohydrate. 300.8mg of calcium. 410.8mg of phosphours, 6.61 mg of iron. 219.8 R.E. of vitamin A, 0.46mg of thiamin, 0.67mg of riboflavin, 10.5mg of niacin, 27.5mg of ascorbic acid. Thus. except vitamin t the content of all the nutrients were higher than the value of 1/3 of the RDA for adults. 4) The high priced group(group 2) had more protein, calcuim. iron and niacin contents than the cheaper group(group 1). Probably, it's because the group 2 had more animal foods than the group 1. 5) The average energy content per unit price(100 won) was 37.3kcal and the average protein content per unit price(100 won) was 1.64g. Korena style boxed-lunches had higher energy and protein contents per unit price than Japanese style, and the group 1 higher than the group 2. 6) The average energy Proportions of Protein, carbohydrate. and fat were 18.3%, 57.4%, and 24.3%, respectively. These proportions are good enough. 7) Frequency of cooking methods for the side dishes were found in the decreasing order : pan-frying, frying, braising, seasoning, kimchi, grilling, pickling, stir-frying, steaming and fermenting. Generally simple cooking methods were used, thus the menus were lack or varieties. 8) Frequency of colors for the side dishes were found in the decreasing order : red, brown. yellow, green, black, white. Too much red pepper was used. 9) The average capacity of the containers for the staples and the side dishes were 468.1ml and 590.6ml, respectively. And the containers could not keep the food items well seperated. 10) The average contensts of sodium and salt were 2.287mg and 5.76g, in the range of 1, 398mg to 3, 489mg and 3.53g to 8.80g, respectively. These are much higher values than the recommended amount of salt.

  • PDF

Evaluation of Ventilation Systems in an Enclosed Nursery Pig House (무창자돈사의 환기시스템 정립 및 환기효율 평가)

  • Song, J.I.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.123-134
    • /
    • 2002
  • An experiment was conducted to establish the most suitable ventilation system for the enclosed nursery pig house in Korea, comparing four different ventilation systems ; i) air enters through perforated ceiling and exhausts through chimney (NA), ii) air enters through perforated ceiling and exhausts through side walls (NB), iii) air enters through perforated ducts and exhausts through side walls (NC) and iv) air enters through perforated ducts and exhausts through chimney(ND). The experiment was carried out during winter and summer separately. The experimental pigs were weaned at fourteen days old in winter (December-February) and at twenty one days old in summer (June-August). The main results of the experiment are as follows : A preliminary experiment showed that in the NC system during summer, air can reach all the pig rooms in the house and the air flow rates of the upper, middle (1.2 m height of the room) and low (at the height of pig stature) parts of the room were measured at 7.0-8.08, over 0.5 and over 0.2 m/s, respectively, which flow rates were much higher(p$<$0.05) than those in other system. At the minimum ventilation efficiency during winter, air flow rates of upper, middle and low parts of the room equipped with the NC system were detected at over 1, less than 0.5 and around 0.07 m/s, respectively. It is concluded that the separated ventilation system air-entering through ducts is the most suitable for the ventilation system of the enclosed nursery pig house and the exhausting system through side walls is more efficient for ventilation than the system through roof. Furthermore, to sustain proper temperature and reduce energy waste as well as heat consumption, a future research should be carried out to develop the environmental control system in relation to developing a heat regulator.

Study on Ventilation Efficiency of A Naturally Ventilated Broiler House-( I ) Summer Season (자연환기식 육계사내의 환기효율성 조사연구-( I )하절기)

  • 이인복;유병기;정문성;윤진하;전종길;김경원;성시흥
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • Most of broiler houses in Korea have the trouble of environmental control such as suitability, stability, and uniformity of internal climate, resulting in serious stress on chickens. Accordingly, it is very urgent to develop optimum designs of naturally and mechanically ventilated broiler houses for Korean climate. In this study, the internal climates such as air temperature, humidity, dust, ammonia gas, and air velocity were measured at a naturally ventilated broiler house. The data were collected during summer season including local weather data. It was found that the difference between measured and optimum air temperatures was $14.0^{\circ}C$ in maximum during the summer time. The daily maximum range of internal averaged air temperature was found $10.5^{\circ}C$ while the uniformity was $5.2^{\circ}C$ in maximum. The maximum, average, and minimum internal averaged relative humidity were 89.3%, 73.7%, and 49.2%, respectively while locally measured were 95.1% and 47.2%, respectively in maximum and minimum. Considering Temperature-humidity index, during summer season, over 97% of totally rearing period was shown that counter plan is needed for thermal stress while it was very dangerous situation for 22% of the rearing period. The ammonia gas and dust concentrations were seriously affected by the broilers activity, growth level, and relative humidity.

  • PDF

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.