• Title/Summary/Keyword: 열간압연

Search Result 229, Processing Time 0.027 seconds

The Effect of Cold-rolling on Microstructure and Transformation Behavior of Cu-Zn-Al shape Memory Alloy (냉간가공에 의한 CuZnAl계 현상기억합급의 결정립미세화와 특성평가)

  • Lee, Sang-Bong;Park, No-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.322-326
    • /
    • 1999
  • In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e $\alpha$-phase must be contained. After heat treatment at $550^{\circ}C$ the $(\alpha+$\beta)$-dual phase with 40vol.% $\alpha$-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at $800^{\circ}C$ for various times, then quenched into ice water. The grain size of co]d rolled samples were $60~80\mu\textrm{m}$ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.

  • PDF

Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill (신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발)

  • 김필호;문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF

Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Shapes and Thermomechanical Analyses of a Hot Roll for Manufacturing Electrodes of Polymer Batteries (폴리머 배터리 전극제조용 압연 고온롤 표면의 형상 및 유한요소 열변형 해석)

  • Kim, Cheol;Jang, Dong-Sue;Yu, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.847-854
    • /
    • 2007
  • The battery electrode of a mobile phone is made of layered polymer coated on aluminum foils and the hot rolling process is applied to increase the density per volume of an electrode for a high capacity battery. The flatness of batteries surfaces should be less than $2{\mu}m$. To satisfy the required flatness, the deformation of roll surface due to bending and heating of the roll should be minimized. Complicated hot oil paths of $100^{\circ}C$ inside the roll are required for heating the polymer layers. FEA was used to calculate thermal deformations and temperatures distributions of the roller. Based on FEA, a modified surface curvature called a crown roll was suggested and this gave the area of 30% improved flatness compared with a flat roll. The flat roll satisfied the flatness of $2{\mu}m$ in the length of 340 mm and the crown roll resulted in the longer length of 460 mm. Experiments to measure the temperature distribution and thermal strain were performed and compared with FEA. There were only 6% difference between two results.

Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling (고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측)

  • Song, Gil Ho;Jung, Jae Chook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high-strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high-strength steel below TS 980 MPa in skin pass rolling.

Effect of Si Content on the Microstructure of Cast M42 Tool Steel

  • Ha, Tae-Kwon;Jeong, Hyo-Tae;Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.221-223
    • /
    • 2007
  • 공구강은 C, Cr, V, Mo, W, Co 및 Si 과 같은 첨가원소를 함유한 복잡한 철계 합금으로 주요 특성인 경도, 부식저항성, 열 연화저항성 그리고 인성의 요구수준에 따라 화학성분이 결정된다. 본 연구에서는 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, 1.0V 조성의 M42 공구강의 미세조직과 열간가공성에 미치는 Si 함량의 효과를 체계적으로 조사하였다. 진공유도용해를 이용하여 Si 함량을 중량비로 0.33 에서 1.7% 까지 변화시켜 $140{\times}140{\times}330\;mm^{3}$ 크기의 잉곳으로 제조하였다. 이렇게 제조한 잉곳들은 $1150^{\circ}C$에서 1.5시간 동안 용체화처리한 후 노냉하였고, 이어 $1180^{\circ}C$에서 15mm 두께의 판재로 열간압연하였다. 공정 탄화물의 형상 및 분해 거동을 중심으로 미세조직을 관찰한 결과 Si 함량이 증가함에 따라 분해속도가 느려지는 것을 알 수 있었고 이로 인해 열간성형성이 급격히 저하되는 것으로 나타났다.