• Title/Summary/Keyword: 열가소성 복합재

Search Result 48, Processing Time 0.026 seconds

Effect of Molding Condition on Mechanical properties during Joining of GMT-Sheet (GMT-Sheet의 접합에 있어서 기계적 성질에 미치는 성형조건의 영향)

  • Kim, H.;Choi, Y.S.;Seo, J.;Han, G.Y.;Lee, D.G.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. In this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this; joining efficiency of GMT-Sheet, increases as lap joint length L increases. Increase of compression ratio causes decrease of joining efficiency after of GMT-Sheet joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We has better design the structure so as not to occur to stress centralization on the joining part.

  • PDF

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Relations between Physical Parameters and Improvement of Mechanical Properties in Jute Fiber Green Composites by Maleic Anhydride Coupler (Jute fiber Green Composite의 커플링제에 의한 물리적 인자의 변화와 기계적 특성 향상)

  • Lee, Jung-H.;Byun, Joon-H.;Kim, Byung-S.;Park, Joung-M.;Hwang, Byung-S.
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.23-31
    • /
    • 2007
  • In order to improve the mechanical properties of jute fiber/polypropylene(PP) composites, the property change with the addition of a coupling agent, maleic anhydride polypropylene(MAPP) was examined experimentally. The maleated coupler acts as an intermediate to chemically connect the polar nature of the fiber and non-polar nature of the polyolefin polymer resin. Furthermore, the decrease in viscosity of the resin which results from the melting point reduction by the MAPP, leads to an increase of contact area with the fiber interface. We discussed the improvement of the PP composite blend of the maleated coupler with the 80mm jute long fiber mat in conjunction with the change of physical parameters in the thermoplastic resin. We confirmed the extent of contribution to the mechanical physical enhancement by using the following parameters: melting flow index(MI) and viscosity, contact angle, thickness of the composite, interfacial shear strength and morphology observation etc. Especially it was observed that the MI and viscosity, MAPP mixture had a very strong relationship with the tensile and flexural strength and modulus, and interfacial shear strength(IFSS).

Preparation and Sound Insulation Properties of Thermoplastic Elastomer Composites with CaCO3 Filler (탄산칼슘 분말을 충진시킨 열가소성 탄성체 복합재의 제조 및 차음 특성)

  • Choi, Jung-Woo;Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.467-471
    • /
    • 2010
  • Composites of ceramic powders and an elastomer-based matrix were prepared by mixing $CaCO_3$ powders with polyethylene and polypropylene elastomers, and their mechanical and sound insulation properties were measured. $CaCO_3$ powders with 0.7 ${\mu}m$ and 35 ${\mu}m$ particle size were added to elastomers up to 80 wt%. Scanning electron microscopy photographs showed uniform distribution of the $CaCO_3$ powders in the matrix. While density and surface hardness increased, melt index, tensile strength and elongation of the composites decreased as the amount of added $CaCO_3$ powders increased. As more $CaCO_3$ powders were added sound transmission loss of the composites increased owing to the increase of density. Addition of 0.7 ${\mu}m$ sized $CaCO_3$ powders resulted in a slightly higher transmission loss than the addition of 35 ${\mu}m$ sized powders because of the increased interface area between the elastomer matrix and the $CaCO_3$ powders. Composites with a polyethylene matrix showed higher transmission loss than those with a polypropylene matrix because the tensile strength and hardness of the polyethylene-based composites were low and their elongation was high.

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Polymer Substrate Materials with Low Dielectric Loss Using Dicyclopentadienyl Bisphenol Cyanate Ester and Polyphenylene Ether (다이사이클로펜타다이에닐 비스페놀 시아네이트 에스터와 폴리페닐렌에테르를 이용한 저유전손실 고분자 기판 소재)

  • Kim, Dong-Kook;Park, Seong-Dae;Lee, Woo-Sung;Yoo, Myong-Jae;Park, Se-Hoon;Lim, Jin-Kyu;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.474-478
    • /
    • 2007
  • Polymer substrate materials with low dielectric loss were obtained by fabricating the composite using dicyclopentadienyl bisphenol cyanate ester oligomer and polyphenylene ether (PPE). From the analysis of the curing reaction of oligomer and catalyst, it was observed that the optimum amount of catalyst was 0.02 phr of Zn content. It was applied to the fabrication of polymer composite. By changing oligomer/PPE weight ratio, the peel strength and the gel content of the fabricated composites were measured, and then, the dielectric constant and the dissipation factor were measured in the GHz frequency range. The amount of PPE affected the peel strength and the dielectric properties of composites. However, the amount of catalyst did not affect them at all. Resulting from all experiments, we obtained polymer composite laminates haying the peel strength of above 1 kN/m and the low dissipation factor of 0.004 at 1 GHz.

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.