• Title/Summary/Keyword: 열/물질전달

Search Result 352, Processing Time 0.034 seconds

A Numerical Study for the Maximizing Water Vapor Flux and Thermal Efficiency in Direct Contact Membrane Distillation (DCMD) Process (직접 접촉식 막증류 공정에서 담수 투과량 및 열효율 극대화를 위한 수치적 연구)

  • Kim, Sang-Hun;Lee, Jung-Gil;Kim, Woo-Seung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.369-380
    • /
    • 2012
  • A one-dimensional numerical model based on the energy and mass equations have been developed to predict the trans membrane water vapor flux and thermal efficiency under various operating conditions in Direct Contact Membrane Distillation (DCMD) process. The model validation have been carried out by experimental data from literature and showed good agreement. The effect of operating parameters such as brine inlet temperature and velocity, and distillate inlet temperature and velocity to increase water vapor flux and thermal efficiency were predicted by the steady-state model. The results showed that the inlet temperature and velocity in brine side are dominant factors to control the water vapor flux and thermal efficiency because the effect of inlet temperature and velocity in brine side showed the higher water vapor flux and thermal efficiency than that of inlet temperature and velocity in distillate side. The water vapor flux was increased 3.4 times in the range of 21.22 $kg/m^2h$ to 71.26 $kg/m^2h$ and the thermal efficiency was increased 37.5% in that of 0.556 to 0.765 with increasing brine inlet temperature from $60^{\circ}C$ to $95^{\circ}C$. Meanwhile, the water vapor flux was increased 30% in that of 27.91 $kg/m^2h$ to 36.33 $kg/m^2h$ and thermal efficiency increased 7.5% in that of 0.6 to 0.646 as the brine inlet velocity was increased from 60 m/h to 300 m/h.

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

Thermal Analysis of Prelaunch Transients in Cryogenic Oxidizer Tank of Liquid Propulsion Rocket (발사대기 중인 액체추진 로켓의 극저온 산화제 탱크 내 비정상 열해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Kyoung-Jin;Cho, Kie-Joo;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • The prelaunch thermal transients in the cryogenic oxidizer tank of liquid propulsion rocket subjected to uniform heat flux from outside are numerically analyzed through thermodynamic equations and heat and mass transfer relations. The prelaunch stage is assumed to be composed of five idealized sub-stages including pressurization process by helium gas injection. The Peng-Robinson equation of state is utilized in the lumped analysis of ullage gas. The liquid region is divided into a number of horizontal layers of uniform properties to account for the thermal stratification. The computational result for the typical case shows that the temperature rise of liquid oxidizer is less than 1K and the adsorbed helium into the liquid is approximately 10g.

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier (판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성)

  • Jeon, Dong-Soon;Lee, Hae-Seung;Kim, Seon-Chang;Kim, Young-Lyoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.

Fischer-Tropsch synthesis in the novel system: cobalt metallic foam catalyst and heat-exchanger typed reactor (코발트 금속 폼 촉매와 열교환형 반응기를 이용한 Fischer-Tropsch 합성 반응)

  • Yang, Jung-Il;Yang, Jung Hoon;Ko, Chang-Hyun;Kim, Hak-Joo;Chun, Dong Hyun;Lee, Ho-Tae;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.133.2-133.2
    • /
    • 2010
  • Fischer-Tropsch synthesis (FTS) was carried out in heat-exchanger typed reactor with cobalt metallic foam catalyst. Considering the heat and mass transfer limitations in the cobalt catalyst, a Co-foam catalyst with an inner metallic foam frame and an outer cobalt catalyst was developed. The Co-foam catalyst was highly selective toward liquid hydrocarbon production and the liquid hydrocarbon productivity at $203^{\circ}C$ reached to $52.5ml/(kg_{cat}{\cdot}h)$, which was higher than that obtained by the Co-pellet. Furthermore, the heat-exchanger typed reactor was developed to efficiently control the highly exothermic reaction heat. The reaction heat generated in the FTS reaction on the cobalt active site was easily transferred to reactor wall by the metallic foam in the catalyst and the transferred reaction heat was directly removed by the hot oil which circulated the wall side of the heat-exchanger typed reactor.

  • PDF

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

A Study of Frost Formation and Heat Transfer on a Cylinder in a Cross-Flow (주유동중에 놓인 원관 외부에서의 발생하는 착상 및 열전달에 관한 연구)

  • Lee, D.G.;Choi, M.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.537-549
    • /
    • 1996
  • A numerical study of heat and mass transfer has been carried out for a frost formation process on a circular cylinder in a cross flow including the effect of buoyancy. Studies include cases of low and high Reynolds number flows. The effect of normal velocity at the surface which is produced due to mass transfer was included in the analysis as well as heat transfer contribution generated due to mass transfer. Variations of heat transfer and frost growth both in time and in the circumferential direction have been obtained for various buoyancy parameters. The effect of flow directions(identical or opposite directions to the gravity) has been studied to yield different frost growth. Our results have been compared with existing experimental data and are in good agreement. Buoyancy analyses for a high Reynolds number flow agree with full numerical solutions for the case of having the same flow direction as gravity. However, for the opposite direction case, the boundary layer analyses would not be applicable to predict frost growth except the region near the stagnation point.

  • PDF

Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow (리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향)

  • Kim, B.J.;Lee, C.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF