• Title/Summary/Keyword: 연행공기

Search Result 55, Processing Time 0.023 seconds

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete (고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성)

  • Kim, Joo-Hyung;Jeong, Ji-Yong;Jang, Seung-Yup;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.

An Experimental Study on the Properties of High Flowing Concrete according to Water/Binder Ratio(W/B) (물결합재비에 따른 고유동콘크리트의 특성에 관한 실험적 연구)

  • 김무한;최세진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.329-335
    • /
    • 2001
  • Recently, in many laboratories and institutes it is being studied on the high flowing concrete widely, which has high fluidity, non-segregation ability and fillingability, and sometimes being applied to the construction field actually. And the fluidity properties of high flowing concrete are influenced according to the several factors ; binder content, water/binder ratio and water content etc. This is an experimental study to compare and analyze the effect of water/binder ratio and water content on the properties of high flowing concrete. For this purpose, the mix proportion of high flowing concrete according to water/binder ratio(W/B : 0.30, 0.35, 0.40, 0.45) and water content (W : 155, 165, 175, 185 kg/㎥) was selected. And then slump-flow, V-lot, L-passing test in fresh concrete, and compressive strength, freezing and thawing test in hardened concrete were peformed. According to test results, it was found that the viscosity of all those high flowing concrete with the water content 175 kg/㎥ was satisfied with 50 cm pass time of slump flow prescribed by Japanese Architectural Standard Specification (JASS 5) - from 3 to 8 seconds. And non-segregation ability of concrete with W/B 0.35 was better than the other mix proportions. Especially, the compressive strength after curing 24 hours(1 day) of all high flowing concrete was higher than that prescribed by JASS 5(50 kgf/㎠).

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes (Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성)

  • Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.