• Title/Summary/Keyword: 연약점토성토재

Search Result 16, Processing Time 0.023 seconds

A Study on Replacement Behaviour of Soft Soil by Centrifuge Modelling Test (원심모형시험을 통한 연약지반의 강제치환거동 연구)

  • 이승원;이영남
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.141-151
    • /
    • 2000
  • 본 연구에서는 토사나 사석을 이용하여 자체를 축조하는 과정에서 발생하는 연약지반의 강제치환거동을 연구하기 위하여 다양한 시험조건에 대한 원심모셩을 수행하였다. 제체축조에 따른 연약지반의 강제치환거동은 제체의 성토시공방법, 성토재의 입경, 연약지반의 종류와 강도 등에 따라 맣은 차이를 보였는데, 특히 성토과정 중에 발생하는 과잉간극수압의 크기와 밀접한 상관관계를 보였다. 급속시공인 경우에 연약지반의 파괴영역은 회적으로 확대되고 성토사면의 기울기는 완만해졌으며, 성토재의 입경이 클수록 치환깊이가 증가하고 성토사면의 기울기가 급하게 형성되었다. 그리고 동일점토에서는 지반의 강도가 클수록 치환량이 적었지만, 점토의 종류가 다른 경우에는 지반내 발생하는 과잉간극수압의 크기와 소산성조에따라 치환거동이 많은 영향을 받는 것으로 나타났다.

  • PDF

A Study on Deformation of Soft Clay Foundation by Embankment Construction (제방축조에 의한 연약점토지반의 변형해석에 관한 연구)

  • 정형식;황영철
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.55-64
    • /
    • 1993
  • When earth structures such as dykes or embankments are constructed on very soft clay foundation, unexpectedly large deformations of earth structures as well as clay foundation are encountered during and after construction. The final constructed section is composed of a portion of embankment above the existing ground level and that which penetrated into the soft foundation soil. This study is aimed to correctly estimate the shape of earth structures which penetrate some depth into the soft clay foundation. In this study the methods to predict penetration depth and deformation shape of embankment section after dumping of construction material. Model tests were carried out to prove the developed theory and FEM analysis. And when the mat is added, reinforcement effect was markedly noticed.

  • PDF

Stability Analysis of Embankment on Soft Clay considering the Rate of Strength Increase (강도증가율을 고려한 연약점토지반 위의 성토의 안정해석)

  • 임종철;강연익;공영주;유상호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.57-67
    • /
    • 1999
  • In conventional stability analysis of embankment on soft clay ground, an averaged undrained shear strength$(s_u)$ for the depth of clay layer is usually used. Also, all applied load is assumed to an immediate load for simplicity of analysis. The load in the field, however, increases gradually. Undrained shear strength increases during loading due to consolidation of clay ground. In this study, the stability analysis program(RSI-SLOPE) is developed. By using this program, it is possible to consider the rate of strength increase according to the elapsed time of consolidation and the depth of clay ground. And the rested duration for consolidation and gradually increased load can also be considered. Using the examples of some embankments, the critical embankment heights calculated by RSI-SLOPE program are compared with those by PCSTABL without the considerations of gradually increased load and rate of strength increase. In addition, this study contains analysis and comparison about the influence of coefficient of consolidation$(c_u)$ and drainage distance$(H_{DR})$ in the embankment design. RSI-SlOPE program may be useful for more effective and accurate embankment design.

  • PDF

A Study on Consolidation Settlement Calculation of Cutting Soft Clay as Fill Material (절취 연약점성토의 성토재 활용에 따른 압밀침하량 산정에 관한 연구)

  • Yonghee Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.5-12
    • /
    • 2024
  • In the case of creating a site in the reclaimed land (public waters), due to the nature of the coastal sedimentary ground, large-scale construction materials are required, It is necessary to utilize soft clay, which is inevitably generated during construction of the complex, as a fill material in terms of resource recycling and economic aspects (reducing the amount of embankment required). In this study, changes in the consolidation characteristics of cut-out disturbed soft clay due to the recycling of soft clay soil were identified, and a consolidation settlement design plan was proposed. Through the results of the consolidation test of the study site, the change in consolidation characteristics (compression index reduction, precede load uncountable) due to disturbance (cutting) was confirmed, the method of calculating (consolidation settlement) the filling clay layer as the composite target layer (consolidation target layer, loading load layer) was analyzed as a result consistent with the actual behavior.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.

An Experimental Study on Geotextile Effects as Reinforcement and Vertical Drain Materials (보강재(補强材) 및 배수촉진재(排水促進材)로서 Geotextile 의 효과(効果)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Soo Il;Yoo, Ji Hyeung;Cho, Sam Deok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.39-47
    • /
    • 1982
  • Geotextile effects as reinforcement and vertical drain materials are studied through the laboratory model embankments on weak clays. The experiments are carried out in four stages; no woven fabrics between clay-crushed stone boundary, fabrics between boundary with no initial pretensioning of fabrics, and fabrics between boundary with two different initial pretensionings of fabrics. In all stages, vertical drains utilizing non-woven fabrics are installed in the clay layer in square pattern to accelarate the consolidation. The experimental model has plane dimensions of $32cm{\times}330cm$. The height for the clay container is 60 cm. The 47 cm height of crushed stone embankment is constructed over the 50 cm deep clay layer. The time dependent pore pressures are measured utilizing the 8 piezometers installed symmetrically on both sides of the wall at different heights. The time dependent deformations are measured utilizing the LED indicating lamp matrix inserted in the crushed stone embankment and the dialgauges put on top of the clay layer where the crushed stones are not laid. The measurements are carried out for 10 days which is equivalent to the time required for the primary consolidation. Through the experimental study, an analytical procedure is developed to predict the time dependent embankment settlement even if the top of the clay layer is reinforced with woven fabrics. This can be done through measuring the maximum pore pressures developed in the clay layer and comparing with the theoretical maximum pore pressures when no reinforcing fabrics are employed.

  • PDF

Residual Settlement for Dredged Soil Deposit Considering Stress History in Incheon Area (인천지역 준설토의 응력이력을 고려한 잔류 침하량)

  • Chun, Byungsik;Lee, Inhoon;Park, Dukhyum;Sung, Hwadon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.5-13
    • /
    • 2008
  • To identify the reclamation history formed by top dredged soil reclamation layer over the original ground, various field tests and laboratory tests were conducted. Especially when the original ground was not completely consolidated, CPTu test was carried out to calculate rational settlement due to the banking load. CPTu test results showed that the degree of consolidation of weak clay ground by dredged reclamation was on average 80%. As the research area was not completely consolidated by dredged reclamation in the past, the consolidation settlement should account for the residual settlement (20%) in the case of additional banking load. When the degree of consolidation of the original ground was not taken into account, the residual consolidation was expected in excessive settlement (up to 20%) and in such case PBD (Plastic Board Drain) was not effective in obtaining desired degree of consolidation.

  • PDF

Geotechnical Characteristics of Reduced Slag-soil Mixtures in Electric Furnace (전기로 제강 환원 슬래그 혼합토의 지반공학적 특성)

  • Shin, Jaewon;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.31-37
    • /
    • 2011
  • Only a few studies have been conducted using reduced slag as recycled material. The reduced slag in electric furnace is produced as a by-product in making a steel and a few applications of the reduced slag as expensive additives and bonding materials or as the stabilized soils was reported. The purpose of this study is to present the feasibility of the reduced slag as recycled material, especially, in a field of civil engineering. In order to achieve the purpose experiments such as SEM and XRF analysis was conducted for the reduced slag in electric furnace. Based on the results various geotechnical experiments were conducted to know engineering properties of slag-soil mixtures. Weathered soils and clay are mixed with reduced slag for various ratios. As the ratio of reduced slag to weathered soil increases, the maximum dry unit weight of the mixture decreased with increasing optimum moisture content. The results indicates that there is no effect on a reduced slag by compaction efforts. The shear strengths of the weathered soil-slag mixtures are slightly higher or similar to those of weathered soils. The permeability of the weathered soil-slag mixtures is similar to that of silty or sandy soils. Therefore, it is possible to use the mixtures as embankment or backfill materials in the fields. The unconfined strength of the mixtures of reduced slag and clay is higher than that of clay and it tends to increase with the curing time. Therefore it can be used to improve the soft ground.

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.

Comparison of Compressibility between the Oedometer Tests with the Field Measurements in Namak Clay (계측결과를 이용한 남악점토의 압축특성 비교)

  • Kim, Dongbeum;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2008
  • Compressibility of the marine clay was mainly studied velocity of consolidation and numerical analysis by this time but studies of reevaluated from the field measurement data was a little. For last three years, areal fills and extensive field instrumentations including settlement and pore water pressure were performed in the site of the Youngsan River estuary site, South Korea. From the settlement data, field consolidation curves for sub-layers were reconstructed. Effective surcharge loads during the staged loadings were calculated using the fill heights and the excess pore water pressures in the ground. In the numerical analysis (PLAXIS), prefabricated vertical drains were also simulated. Laboratory, field, and numerical analysis showed good agreements in compressibility. Due to different conditions and limitations of the clay was the same range of the oedometer tests.

  • PDF